Продукты        12.01.2024   

Селуянов ушел из жизни. Виктор селуянов: сердце – не машина…. Что происходит в организме при выполнении изотонических упражнений

Селуянов Виктор Николаевич

Селуянов Виктор Николаевич- доктор биологических наук, профессор кафедры физической культуры и спорта, специалист в области биомеханики, антропологии, физиологии, теории спорта и оздоровительной физической культуры, спортивной адаптологии, автор ряда научных изобретений и инновационных технологий, создатель оздоровительной системы изотон .

Изотон

Изотон , это оздоровительная система, которая была создана профессором Селуяновым В.Н., в середине 90-х годов прошлого столетия.

Само название- изотон происходит от греческого- isos tonos, что значит тонус, напряжение, а если говорить об изотонических упражнениях, то можно перевести слово изотонический как равное напряжение мышцы во время движения. как это происходит при простом подъеме руки. Уже становится понятным, что упражнения надо делать с одинаковым напряжением мышц.

Цель системы

Цель очень простая-сделать человека , улучшить его самочувствие и работоспособность, изменить состав тела, то есть привести в норму соотношение жировой и мышечной ткани, повысить активность мужчин и женщин широкого возрастного диапазона, повысить иммунитет, нормализовать работу внутренних органов.

Эта система разрабатывалась на научной основе, то есть сначала ученые изучили как силовые упражнения влияют на организм человека, потом глубокому анализу подверглись все западные методики занятий, это бодибилдинг, аэробика, спортивные игры. Изучены были и восточные оздоровительные системы, это йога, цигун, что-то было взято и из нашей То есть исследованию подверглись все наиболее популярные системы с точки зрения оздоровления организма.

Потом с помощью компьютерного моделирования было изучено как и какая нагрузка благоприятно влияет на наш организм, как физиологические системы организма реагируют на нагрузку, какие биохимические процессы происходят в организме при занятиях бодибилдингом, аэробикой. калланетикой и другими видами занятий.

После проведенных исследований, и знакомства с научными публикациями убедило ученых в том, что существенного теоретического обоснования ни одна из перечисленных систем не имеет. Кроме этого, были обнаружены публикации, в которых экспериментально доказана очень низкая эффективность наиболее популярных систем оздоровления, таких, как разные виды аэробики.

Как итог, была создана или разработана оздоровительная система изотон , которая базируется на концепции, согласно которой в основе биологического благополучия человека (как решающего условия) лежит, прежде всего нормальное состояние эндокринной и иммунной систем, а также других физиологических систем организма (сердечно-сосудистой, мышечной и т. д.), играющих, однако, подчиненную роль в решении проблемы здоровья.

Основные принципы оздоровительной системы изотон

Понятие «ИЗОТОН» имеет в своем происхождении две идеи:

Первая — основным средством физического воспитания основной массы практически здоровых людей, обладающим наивысшей оздоровительной эффективностью, являются силовые стато- динамические, или изотонические упражнения.

Вторая — регулярное использование стато- динамических упражнений в жизни человека создает условия для повышения адаптационных резервов, создает повышенный и постоянный жизненный тонус.

Реализация идей ИЗОТОНА достигается при соблюдении следующих принципов:

Принцип минимизации роста систолического артериального давления Понятно, что для лиц с признаками противопоказано выполнять упражнения, вызывающие рост артериального давления более 150 мм рт.ст. Поэтому при построении тренировочного занятия необходимо соблюдать следующие требования.

Разминка. Перед основной частью занятий, перед силовыми упражнениями, необходимо добиться расширения артерий и артериол с помощью разминки. В этом случае снижается периферическое сопротивление, облегчается работа левого желудочка сердца.

Упражняться в положении лежа . В положении стоя сердце должно нагнетать давление крови в артериях и артериолах до такой степени, чтобы преодолеть вес крови, находящейся в венозной системе, поднять кровь на уровень сердца. Поэтому надо отдавать предпочтение упражнениям, выполняющимся в положении лежа.

Задействовать в силовом упражнении минимальное количество мышц . При вьполнении динамических упражнений напрягающиеся и расслабляющиеся мышцы облегчают работу сердца. При выполнении силовых упражнений, когда темп медленный, роль мышечного насоса сводится к минимуму, а при активности большой массы мышц, при окклюзии сосудов, работа сердца затрудняется. Поэтому в силовых упражнениях следует задействовать минимальное количество мышц, особенно в том случае, если они работают в стато-динамическом режиме.

Чередовать упражнения для относительно больших по массе мышц с тренировкой мышц с малой массой. При построении комплекса упражнений часто приходится активировать большую массу мышц, что создает условия для роста артериального давления. Поэтому выполнение следующего упражнения для мышц с малой массой снимаются возможные проблемы с ростом артериального давления.

После каждого силового упражнении или серии выполнять стретчннг. Стретчннг не предъявляет к сердечно-сосудистой системе особых сложностей, поэтому имеется 10- 40 с для снижения активности ее деятельности. Одновременно с этим растяжение мышц стимулирует синтез белка в мышцах.

Как надо выполнять упражнения

Упражнения надо выполнять с постоянным напряжением мышц, без фазы расслабления, «до отказа» или до чувства жжения в мышцах. Это сигнал к тому, что надо прекратить упражнение и отдохнуть. Амплитуда движения небольшая. Выполнение упражнения длится 30-60 секунд, отдых между упражнениями примерно 30 секунд. Тут каждый подходит индивидуально, в зависимости от своего состояния. Упражнения выполняются в умеренном темпе и без задержки дыхания.

Например. делаем приседания- 10-20 раз, отдых 30 секунд, потом повторяем снова 10-20 раз. опять отдых 30 секунд, повторяем третий раз то же самое. Это у нас получился один круг. Потом отдых на эту группу мышц 5-10 минут. В это время можно проработать например пресс, спину или бицепс по той же схеме. За одно занятие можно делать 3-4 круга, если вы хорошо готовы. то 5-8 кругов.

За одно занятие прорабатывайте 2-3 группы мышц не более. Все мы разные, поэтому для каждого человека должен быть свой индивидуальный подход. Существуют основные принципы. и этим принципам надо следовать.

Еще один важный момент-Упражнения надо выполнять так. чтобы не было сильного закисления мышц. Молочная кислота или ионы водорода при сильном закислении просто разрушают клетку. Поэтому важен отдых между упражнениями, чтобы молочная кислота исчезала, и начался синтез новых клеток.

Изотон состоит преимущественно из силовых упражнений, потому, что самый сильный выброс гормонов в кровь происходит при силовых упражнениях при достижении физиологического стресса. Причем лучше всего это происходит, когда выполняешь упражнения в статодинамическом режиме.

Изотонические упражнения на каждый день для широкого возрастного диапазона

Что происходит в организме при выполнении изотонических упражнений

А происходит вот что. При напряжении мышц наш организм испытывает кратковременный стресс, а к стрессам относится все, что неприятно нашему организму, в данном случае это напряжение мышц.

В коре головного мозга возникает психическое напряжение, которое возбуждает гипофиз, а гипофиз это железа эндокринной системы, которая находится в головном мозге под основной коркой.

Начинают активизироваться и другие железы эндокринной системы. Железы эндокринной системы начинают выделять соматотропный гормон или гормон роста, этот гормон способствует процессам синтеза в организме и активизирует белковый. липидный, углеводный и минеральный обмены. Гормон строит мышцы. кости, связки, сухожилия организма.

Выделяется такой важный для мужчин гормон, как-. У женщин- эстроген. Основная роль заключается в выполнении двух важных функций:

  • Стимуляция роста мышечной массы, сжигание жира и поддержание оптимальной плотности костных тканей. Являясь по своей химической структуре анаболическим стероидом, он активизирует образование и обновление клеток и мышечных структур
  • .Формирование у мужчины вторичных половых признаков, обеспечение полноценной деятельности органов половой системы.

Эстрогены у женщин, это стероидные гормоны, которые влияют на рост и развитие половых органов, подготавливая женщину к материнству. Если женский организм в достаточном количестве содержит эстроген. то первое. что бросается в глаза это красивая фигура с тонкой талией и красивыми бедрами, бархатистая кожа.

Вот два важных для нас гормона-это гормон роста и которые начинает выделять эндокринная система при занятии изотоном. Гормоны попадают в клетку, и как написано выше.начинается строение новых клеток и мышечных структур, сжигаются жировые отложения. Организм обновляется. Именно эндокринная система отвечает за оздоровление организма и играет важную роль в здоровье человека.

  • Надо отметить, что гормоны заходят не в пассивную ткань, а в активную, та которая прорабатывается,
  • Гормоны появляются только при наличии психического напряжения или стресса
  • Если заниматься со штангой, то вес должен быть 30-60% от максимального веса который вы сможете поднять.
  • Упражнения надо выполнять без задержки дыхания.
  • Между упражнениями должен быть отдых 5-10 минут, чтобы мышцы восстановились и из мышц ушла молочная кислота.
  • С помощью выделяемых гормонов можно сделать сосуды чистыми.
  • Обязательно перед занятием делать разминку 5-10 минут и стретчинг

Теория атеросклероза или как сделать сосуды чистыми

С помощью бега трусцой не избавишься от, так как нет условий для выделения гормонов, нет стресса или психического напряжения. Бег трусцой, это легкий, комфортный бег, без напряжения мышц.

Правильное питание и регулярное выделение гормонов, способствует избавиться от Гормон проникает в бляшку, держится там около недели, в итоге холестерин обратно превратится в жир, жир выйдет в кровь и уйдет.Прощай

Выполнение физических упражнений приводит к активизации различных тканей, усилению в них процессов анаболизма и катаболизма. В зависимости от режима питания можно направить ход адаптационных процессов в желаемое русло, например, увеличить массу мышц (прием выше нормы полноценного белка), (прием ниже нормы углеводов и жиров).

Почему не льзя задерживать дыхание во время упражнений

Когда человек при выполнении упражнений, особенно неподготовленный или в возрасте, начинает задерживать дыхание он по сути лишает сердце кровотока, сердце бьется. а кровь не поступает должным образом.

Выполнив, упражнение человек встает и начинает интенсивно дышать, сердце бешено бьется, давление возрастает, мощный кровоток бьет по сосудам, и если там есть то этот кровоток ее срывает и где-то что-то закупоривается и получается микраинсульт. Поэтому задержка дыхания недопустима.

Изотонические упражнения

Изотон предназначен для всех категорий людей, которые хотят убежать от инсульта или инфаркта, Почувствовать себялюдьми. Предлагаются обычные физические упражнения, о которых люди с возрастом обычно забывают и уповают на чудо — таблетку.

Как говорит Селуянов, изотон расчитан на мужчин шестидесяти лет, которые готовы завтра умереть.

Тем не менее, изотон, это оздоровительная система, имеющая доказательную базу Селуянов доступно рассказывает какие изменения происходят в организме при регулярных занятиях изотоном.

Изотон- это, которые можно делать где угодно, было бы ваше желание.

Как пример, посмотрите несколько упражнений оздоровительной системы изотон. Упражнения можно подобрать для каждого человека. независимо от его физического состояния.

Для одних подойдут более легкие упражнения, упражнения можно делать лежа или сидя. Это для людей старше пятидесяти лет, у которых мышцы уже атрофировались.

Другим упражнения посложнее, это для тех кто помоложе и не все еще растерял. Количество повторов выполнения упражнения также индивидуально. Но двигательная активность необходима всем, это истина.

Комплекс статодинамических упражнений

Статодинамические упражнения для красивой осанки

Статодинамическая тренировка

Селуянов ВикторНиколаевич. Биография

Виктор Николаевич Селуянов- родился в 1946 году.

В 1970 году закончил Государственный ордена Ленина институт физической культуры

1979 год- кандидат биологических наук. Старший научный сотрудник

1992 год-защитил докторскую диссертацию

1995 год- получил патент «Способ изменения пропорции состава тканей всего тела человека и в отдельных его сегментах», разработал математические модели, имитирующие срочные и долговременные адаптационные процессы в организме спортсменов.

В последне время время -заведующий научно-учебной лабораторией МФТИ 〈 Информационные технологии в спорте 〉, Заместитель заведующего кафедрой по научной работе.

Профессиональные интересы- спортивная антропология, физиология, теория спортивной тренировки и оздоровительной физической культуры.

Селуянов Виктор Николаевич


Селуянов Виктор Николаевич

Селуянов опубликовал более 100 научных работ, в том числе: монографию « Биомеханика двигательного аппарата спортсменов» (1981 год, соавтор), «Физическая подготовка в спортивных играх» (1991 год, соавтор), «Изотон, основы теории оздоровительной тренировки» (.1995 год, соавтор) и другие.

В 1981 году- лауреат премии Спорткомитета СССР за лучшую научно-исследовательскую работу в области визической культуры и спорта.

По системе Силуянова занимались и продолжают заниматься многие известные спортсмены- дзюдоисты: чемпионы мира 2001 года Макаров, Михайлин, бронзовый призер олимпийских игр 2004 года Д. Носов, заслуженные мастера спорта по самбо Д. Максимов, Мартынов, Р. Сазонов.

Олимпиада 2004 год, Афины. Дмитрий Носов

Чемпионат мира по дзюдо — 2001 год, Мюнхен, Макаров Виталий-Zamora David

Полная лекция профессора Селуянова В. Н.

Транскрипт

1 Визитная карточка Виктор Селуянов: СЕРДЦЕ НЕ МАШИНА СЕЛУЯНОВ Виктор Николаевич (1946 г.р.) выпускник Государственного центрального Ордена Ленина Института физической культуры (1970). Специалист в области спортивной антропологии, физиологии, теории спортивной тренировки и оздоровительной физической культуры. Профессор. Кандидат биологических наук (1979). Старший научный сотрудник. Опубликовал более 100 научных работ, в том числе: монографию Биомеханика двигательного аппарата спортсменов (1981, соавтор); учебные пособия Биомеханические основы совершенствования эффективности техники педалирования (1985, соавтор), Физическая подготовка в спортивных играх (1991, соавтор), Изотон. Основы теории оздоровительной тренировки (1995, соавтор). Лауреат премии Спорткомитета СССР за лучшую научно-исследовательскую работу в области физической культуры и спорта (1981). Имеет патент Способ изменения пропорции состава тканей всего тела человека и в отдельных его сегментах (1995). Разработал математические модели, имитирующие срочные и долговременные адаптационные процессы в организме спортсменов (1995). Заведующий лабораторией фундаментальных проблем теории физической и технической подготовки спортсменов высшей квалификации Российской государственной академии физической культуры; профессор кафедры естественнонаучных дисциплин и информационных технологий РГАФК. Сокращения и термины, использованные в статье: МВ мышечное волокно (волокна) ММВ медленные мышечные волокна БМВ быстрые мышечные волокна ОМВ окислительные мышечные волокна ГМВ гликолитические мышечные волокна АэП аэробный порог АнП анаэробный порог МПК максимальное потребление кислорода КФ - креатинфосфат АТФ аденозинтрифосфорная кислота (основная "энергетическая валюта" клетки) Миофибриллы - сократимые элементы мышечной клетки (цилиндрические нити толщиной 1-2 мкм, идущие вдоль от одного конца мышечного волокна до другого), сокращаются в присутствии АТФ. Митохондрии клеточные органеллы (элементы), в которых синтезируется АТФ за счет окислительного фосфорилирования. Окислительное фосфорилирование функция клеточного дыхания, при которой происходит синтез АТФ (идет в митохондриях). Цикл Кребса (цикл трикарбоновых кислот, цикл лимонной кислоты) представляет собой серию химических реакций, протекающих в митохондриях, и является общим конечным путем окисления углеводов, липидов и белков. Миокард сердечная мышца Миокардиоцит клетка миокарда

2 О пользе Интернет-магазинов Испытывая острый информационный голод, знакомый тренер попросил одного из нас заказать несколько книг в Интернет-магазине. Заодно я заказал несколько дополнительных книг для себя. И, как теперь понимаю, не прогадал. Одна из них, «Подготовка бегуна на средние дистанции», написанная Виктором Николаевичем Селуяновым, оказалась для меня настоящим открытием. После этого были куплены еще 5 экземпляров, которые разошлись по знакомым. Вдобавок в Интернете обнаружились статьи этого же автора в журнале «Легкая атлетика», удачно дополняющие книгу конкретными примерами. Сначала о том, что бросилось в глаза сразу. Большинство спортсменов знают, что такое биопсия. Из боковой поверхности бедра берется кусочек мышцы, и с помощью биохимических методов определяется соотношение быстрых и медленных волокон. У кого преобладают быстрые волокна, тот считается предрасположенным к спринту, у кого больше медленных - тот считается стайером. Так вот, то же самое можно сделать куда менее «изуверскими» методами, да и, вдобавок, точнее. В книге описан метод определения процента быстрых и медленных мышечных волокон не с помощью биопсии, а с помощью динамометрии по скорости нарастания силы. Такие исследования проводились в России и в Финляндии. Только у нас использовали более точный показатель - отношение скорости нарастания к самой силе. Но это еще не самое интересное. Метод позволяет безболезненно проверить хоть все мышцы тела. И оказывается, что мышцы разных частей тела могут иметь разное процентное соотношение быстрых и медленных волокон. Например, у средневиков, как правило, мышцы передней поверхности бедра медленные, а задней поверхности - быстрые. То есть данные биопсии, взятые из одних мышц, не обязательно будут справедливы для мышц другой группы. Еще один любопытный факт. В книге описаны критерии, при которых происходит рост мышечной массы при упражнениях. Так вот, оказывается, чтобы мышцы росли, их необходимо слегка закислять. А окислительные волокна в обычном режиме закислить невозможно. Поэтому обычно все тренируют их аэробные возможности, а силу нет. Были предложены статодинамические упражнения, при которых мышцы не расслабляются полностью (по методике культуристов), капилляры в них пережимаются, создается локальная гипоксия, и удается закислить даже окислительные волокна. В результате таких упражнений удается значительно гипертрофировать именно окислительные мышечные волокна, что позволяет сильно поднять аэробные возможности спортсмена. Например, в одном из экспериментов 20-процентный прирост силы окислительные мышечных волокон давал 20- процентный прирост потребления кислорода на уровне АнП! И в этом кроется большой резерв для спортсменов циклических видов спорта, особенно тех, у кого останавливается рост результатов. Кроме того, если правильно использовать регулярные силовые упражнения, то они поднимают общий гормональный фон, железы эндокринной системы увеличиваются в размере, улучшается здоровье. В итоге спортсмен использует собственные гормоны как «естественные» анаболики, и в ходе дальнейшей подготовки на предсоревновательном этапе может выдержать большие нагрузки. Как программиста, меня также очень заинтересовали компьютерные модели адаптации, описанные в книге. Задавая начальные параметры спортсмена, различные виды нагрузки и продолжительность отдыха, можно увидеть, как изменяется состояние различных систем организма спортсмена во времени. Модели довольно точно согласуются с экспериментальными данными, что позволяет «поиграть» с виртуальным спортсменом, и посмотреть что будет. Хотя, как говорит сам Виктор Николаевич, главное назначение модели раз «угробить» виртуального человека с целью научиться понимать, что же происходит с организмом, чтобы потом не загубить живого спортсмена.


3 Книга очень многое прояснила. Но при этом возникло огромное количество вопросов, в основном по возможности применения описанных методик в тренировке лыжников. Мой знакомый также давно заприметил статьи Селуянова в «Легкой атлетике», и тоже имел немало вопросов. В итоге возникла идея встретиться с Виктором Николаевичем и удовлетворить свое любопытство, конечно, с прицелом на статью в «Лыжном спорте». Несколько встреч нас с Эдуардом Ивановым терпеливо просвещали и отвечали на вопросы, пока, наконец, не начала складываться логичная картина. Первый вопрос, который мы задали, был о различии бегунов и лыжников, и какие методики из книги можно использовать лыжникам. Вот что ответил Виктор Николаевич: Бегун и лыжник в чем разница? Прежде всего, надо определиться, что такое легкоатлет, и что такое лыжник-гонщик. Если рассматривать процессы, которые разворачиваются внутри спортсмена, будь то бегун или лыжник, то для всех дистанций начиная у лыжников с 1,5 км (условно) и у легкоатлетов с 1500 м, механизм энергообеспечения одинаков. Поэтому надо говорить не о лыжнике или бегуне, а надо говорить о том, что обеспечивает достижение наивысшего результата в беге на средние дистанции (в лыжах это спринт) и на стайерских дистанциях. Так вот, получается, что если уйти вообще в другой вид спорта - велосипедный, то начиная с дистанции в 4 км (примерно соответствует 1.5 км у бегунов), никакой разницы нет. В велосипедном спорте, 4 км и часовую гонку выигрывает тот, кто выигрывает среднюю дистанцию. Этот спортсмен выигрывает все дистанции без исключения. Тут нужно учесть, что в велосипедном спорте есть одна особенность спортсмены выступают на равнине, на треке, где собственный вес не играет никакой роли. Поэтому тот, кто силен на 4 км, он во всем силен. Есть великие гонщики, такие как Индурайн, Меркс или сейчас Лэнс Армстронг, которые выигрывают за явным преимуществом на всех дистанциях, начиная с гонки преследования (4 км) и больше. Если ему надо установить мировой рекорд в часовой гонке, он установит мировой рекорд на 5 км, потом на 10 км, на 20, 25, 50 и в часовой гонке. Как правило, все великие, которые едут, бьют все мировые рекорды, и средняя скорость у них практически не меняется. То же самое у конькобежцев. Подъёмов нет, поэтому картина такая же, как у велосипедистов. Если есть Хайден, он выигрывает все от 500 м до м. В конькобежном спорте (как и в лыжном) можно не быть спринтером. Есть, конечно, чистые спринтеры, но они больше 500 м не бегают, потому что они закисляются так, что на 1000 м уже ничего показать не могут. А Хайден стайер. Наш Железовский тоже стайер, а бежал 500 м, потому что делал меньшее число шагов по дистанции, он медленно отталкивался, но очень сильно. А теперь, когда ввели отрывающуюся пятку, еще понятнее стало, зачем сила нужна. Результаты выросли на 3-5 секунд, потому что добавилась еще одна мышца икроножная. Примерно такая же картина и у лыжников, если они бегут по равнине. Хотя есть различия в классическом и коньковом ходе, по разному распределяется нагрузка на мышцы. Но в спринте, поскольку для лыжников это новый вид, сразу видно, что кто-то проигрывает, кто-то выигрывает, и поэтому кажется, что какая-то специализация есть. Эти отличия, особенности, мы и постараемся поймать на примере легкой атлетики. Потому что там всё проще бегут ноги и бегут (остальное не имеет существенного значения). Что такое бегун на средние дистанции? Это человек, который по аэробным возможностям готов как марафонец, то есть на уровне АнП потребляет кислорода по абсолютной величине столько же, сколько и марафонец. Но у марафонца, когда он бежит свою дистанцию, включаются все окислительные мышечные волокна, которые есть, и дополнительные мышечные волокна он не имеет права включать. Если они есть он плохой марафонец, плохой стайер, у него половина ОМВ, половина гликолитических, и если он бежит с этими ГМВ, то везет на себе лишний вес порядка 6-8 кг. Включить эти ГМВ нельзя, он закислится и устанет, а везти их на себе можно. То есть плохой марафонец - это средневик, не


4 обладающий высокой скоростью бега на 100 м, у него есть ГМВ, но они медленные. Поэтому, когда надо бежать 1500 м, он так же бежит за счет окислительных МВ, подключая постепенно гликолитические, а потом надо финишировать за счет БМВ, а их нет. Поэтому тот, кто прибежал на финиш с запасом БМВ, тот и выиграет. Все бегуны на 800 и 1500 м отличаются тем, что у них четырехглавые мышцы бедра потребляют много кислорода, там одни ОМВ, а задняя поверхность бедра имеет БМВ, и они могут быть тоже окислительными. Выходит, они по задней поверхности бедра спринтеры и могут бежать 20 м с ходу быстрее 2 с (такой тест у нас есть), скорость бега у них как у настоящих спринтеров, но стартовый разгон не получается, потому что четырехглавая мышца слабая. Что такое бег на средние дистанции нужно бежать с крейсерской скоростью, постепенно включая дополнительные мышечные волокна, а за м до финиша должен быть резерв МВ, которые можно подключить, и они должны оказаться быстрыми. Всякий другой человек, у которого этого нет, сможет прибавить скорость, но не настолько, чтобы выиграть у прирожденного «средневика». Классификация мышечных волокон. Изменение мышечной композиции под действием тренировки Теперь остановимся подробнее на классификации мышечных волокон. Первый способ на быстрые мышечные волокна (БМВ) и медленные мышечные волокна (ММВ), эта классификация идет по ферменту АТФаза миофибрилл (сократительных элементов), тип которого может быть быстрым или медленным. Отсюда быстро сокращающиеся и медленно сокращающиеся МВ. Соотношение быстрых и медленных волокон определяется наследственной информацией, и изменить его мы практически не можем. Второй способ разделение МВ на окислительные и гликолитические, а они делятся уже не по миофибрилле, а по количеству митохондрий (структур клетки, где происходит потребление кислорода). Если есть митохондрии, то МВ окислительные, мало митохондрий или почти нет гликолитические. Способность МВ к гликолизу также наследуется и определяется количеством ферментов гликолитического типа. Но вот количество митохондрий достаточно легко изменяется под воздействием тренировок. И с увеличением числа митохондрий МВ, бывшее гликолитическим, становится окислительным. К сожалению, в этом вопросе существует путаница. Обычно смешивают обе классификации. Говорят о медленных, а подразумевают окислительные, смешивают гликолитические и быстрые. На самом деле медленные тоже могут быть гликолитическими, хотя этот вариант в литературе не описывается. Но мы знаем, что если человек лежит в больнице предоперационный период, а потом ещё и послеоперационный период, то потом уже и встать не может, ходить не может. Первая причина координация нарушается, а вторая причина мышцы уходят. И самое главное, уходят, прежде всего, митохондрии из ММВ (период их "полураспада" всего дня). Если человек пролежал 50 дней, то от митохондрий почти ничего не останется, МВ превратятся в медленные гликолитические, поскольку медленные или быстрые наследуется, а митохондрии создаются. (Быстрые МВ при правильных тренировках также могут стать окислительными). Поэтому с точки зрения тренировочного процесса для данного спортсмена не интересно деление МВ на медленные и быстрые это имеет значение на этапе отбора. Вся логика построения тренировки идет не с точки зрения сокращения мышц по скорости, а направлена на превращение ГМВ в окислительные. Ибо в этом случае мы изменяем конкретного человека. Цель тренировки в циклических видах спорта - создавать митохондрии. Только митохондрии потребляют кислород, значит, спортивная форма растет по мере накопления митохондрий. Возьмем мышечное волокно. У него есть миофибриллы, каждая миофибрилла оплетается митохондриями, и больше определенного предела они не могут образоваться, только в один слой, если условно так говорить. В конце концов, эти МВ накапливают столько митохондрий, что больше ничего прибавить не могут. ММВ быстро выходят на предел подготовленности, и


5 дальше весь процесс роста спортивной формы идет через то, что мы гликолитические превращаем в окислительные. (Низкопороговые МВ потому и окислительные, что постоянно работают при любых интенсивностях с максимальной для них мощностью). Перестаём тренироваться или, например, начинаем низкопороговые тренировать, тогда высокопороговые митохондрии теряют. Весь смысл набора спортивной формы набрать митохондрии в МВ высокопороговых двигательных единиц, другого пути нет. Все только этим и занимаются, а думают об интервальной тренировке и еще о чем-то, то есть о формальности. А суть тренировки поменять содержание мышечных волокон, то есть добавить митохондрий. Вот вы начинаете правильно тренироваться и набираете митохондрий всё больше, больше и больше, мышцы переходят из формы гликолитической в окислительную, то есть с обилием митохондрий. И когда все мышечные волокна становятся окислительными это предел спортивной формы, больше ничего не получится. Хотя тут есть одна хитрость. Дело в том, что окислительные волокна потребляют только жиры (пока есть запас жиров), а мощность при окислении жиров теряется. Отсюда получается некий парадокс не надо делать так, чтобы мышцы были только окислительные, надо оставить немного гликолитических, иначе будете на жирах бежать, а мощность функционирования на жирах меньше примерно на 15%. Тогда те же самые мышцы будут более мощно работать. Понятно, что к лыжному спорту это тоже относится. Влияние гликолитических и окислительных мышечных волокон на результат Так вот, вы начинаете бежать среднюю дистанцию, разбегаетесь, и выходите на порог анаэробного обмена, он как раз соответствует моменту, когда функционирует все ОМВ и даже часть гликолитических. При этом получается, что человек выходит на крейсерскую скорость. Если у него только ОМВ, то он так и будет стабильно молотить. Прибавить не может и убавить не может (убавить, конечно, может, но это ему не надо, а прибавить не может, потому что не чем добавить), он прибежит с той же самой скоростью на финиш. Если с ним будет бежать точно такой же человек, но у которого будет запас ГМВ, то он на финише всегда прибавит. Значит, получается, средневик это человек, у которого есть запас мышечных волокон, которые он может включить в работу, и лучше быстрых гликолитических, тогда финиш будет еще быстрее. Так же и у лыжников: тот, у кого есть запас ГМВ, на финише выиграет, если дистанция будет ровная. Но, увы, так не бывает. Снова перейдем на более простой вид спорта, велосипедный (мне ближе). Рассмотрим спортсмена, у которого ОМВ только 15-20%, остальные гликолитические. На равнине он набирает критическую скорость, превышает её, и начинает постепенно закисляться. Проходит 5-6 минут, он попадает в мертвую точку, пульс запредельный, дышать невозможно. Спортсмен начинает мощность снижать, и через 2-3 км выходит, наконец, на ту самую скорость, которая нужна. Вот классический вариант развития физиологических процессов на равнине. А если это не равнина, а холмистая местность, и холмы короткие, по длине такие, что на подъем затрачивается не больше 30 секунд? Тогда в этот холм спортсмен включает свои ГМВ, их хватает ровно на 30 секунд. В холм влетает, скорость большая, а со спуска работать уже практически не надо, ГМВ восстанавливаются, потом опять подъём, спуск и т.д. При этом он может влететь в этот подъём быстро и мощно, а другой, у кого только одни окислительные, такой мощности не получит, попытается отыграть на спуске, но это очень трудно и особенно добавить не удастся. В этих условиях спортсмен, у которого много ГМВ, начинает выигрывать. Рассмотрим двух спортсменов в равных условиях, но у первого мышцы покрупнее (больше ГМВ), а у второго поменьше. Если это равнина, первый, скорее всего, выиграет, потому что включит на финише гликолитические волокна. По дистанции они будут одинаково ехать, а на финише первый выиграет с разницей в 1-2 секунды. Если холмистая местность, но с короткими холмами, выиграет первый, у которого больше гликолитических МВ, может еще больше выиграет, потому что он в каждую горку 1-2 секунды отыграет, а со спуска еще


6 быстрее уедет. Но как только горка превращается в минутную, то на первой он 2 секунды отыграет за 30 секунд, второй немножко отстал, а потом на следующей горке второй ему 10 секунд ввезет, потому что у первого ГМВ перестанут нормально работать, закислятся, а у второго ничего не закисляется, он со стабильной скоростью до верха и доедет. Вот тут эти нюансы и возникают. Теперь переключимся на лыжи. Если спринт будет с короткими подъёмами, или же длинная дистанция с короткими подъёмами, выиграет тот, у кого есть запас ГМВ и очень большой. Но в лыжном спорте коротких подъемов почти не бывает. А как только подъёмы по длительности уходят за 30 секунд, всё меняется, к 40-й секунде ноги начинают здорово болеть, а к 1 минуте дыхание резко учащается, потому что ГМВ начинают накапливать ионы водорода, молочную кислоту, начинается значительное выделение углекислого газа, он заставляет интенсивно дышать, пульс за 200 и страшные мучения. Если всё время выходить на пульс, повторять его по ходу гонки раз, то и соперника не увидишь (состояние будет предельно тяжелым). Физиология мышечного сокращения. Закон рекрутирования мышечных волокон Напомним современные знания физиологии мышечного сокращения. Начнем с учебных знаний. В учебнике пишется, что существует процесс сокращения мышцы, и он обеспечивается некими механизмами энергообеспечения. Сам механизм сокращения связан с затратой молекул АТФ, молекулы АТФ должны быть внутри синтезированы с помощью молекулы КФ, а свободный креатин и свободный фосфат являются стимулом для разворачивания либо анаэробного гликолиза, либо аэробного гликолиза, либо окисления жиров. Вот классическая схема, современная, которая сейчас принята. Эта уточненная схема предложена Саксом, нашим ученым (у Чазова работает), для миокарда. В схеме существует КФ шунт, или, другими словами, все метаболические и энергетические пути, гликолиз и окисление жиров идут только через ресинтез КФ, а уже КФ идет непосредственно на ресинтез АТФ. Вот современные учебные знания. В соответствии с ними, если спортсмен начинает двигаться в режиме «во всю», в течение примерно 15 секунд тратятся запасы АТФ и КФ (фосфагенов). Потом должен развернуться процесс, который стимулируется свободным креатином. Это, в первую очередь, процесс анаэробного гликолиза, который продолжается одну, может быть, полторы минуты, а вслед за этим должен развернуться процесс окислительного фосфорилирования, то есть начинается уже аэробный гликолиз. У нормального человека запасы углеводов снижаются где-то после мин, а полностью заканчиваются через 45 мин. И только тогда, когда заканчиваются запасы углеводов в мышце и глюкоза в крови, начинает интенсивно развиваться процесс, связанный с окислением жиров. В случае передвижения со средней интенсивностью, при недостатке кислорода в крови, разворачивается анаэробный гликолиз. Это классическая схема. Но эта схема не выдерживает критики, когда мы переходим с представлений уровня пробирки или одного единственного мышечного волокна к мышце в целом. Для единственного изолированного МВ это более или менее правильное описание. Но у нас не одно МВ, а множество, еще есть множество мышц и, следовательно, в нашу модель мы должны включить и эти элементы. Кроме того, у нас есть ОМВ и ГМВ, у нас есть те МВ, которые раньше рекрутируются при определенной интенсивности: если интенсивность меняется, то дополнительные мышечные волокна включаются. Короче говоря, есть закон рекрутирования МВ. Если все эти компоненты учесть, то мы построим новую модель, которая состоит из центральной нервной системы, которая управляет мотонейронами в спинном мозге, а мотонейроны управляют мышцами. И вот в зависимости от импульсации, которая идет сверху, рекрутируются сначала низкопороговые двигательные единицы, а потом всё более высокопороговые, когда, допустим, увеличивается сила отталкивания. И в этом случае получается совсем другая картина.


7 Например, вы начинаете двигаться с усилием 50% от максимума, максимум это спринт (3-7 секунд), а 50% это, условно говоря, бег на 1500 м или на 3000 м. Что будет происходить в организме? Вы рекрутируете столько мышечных волокон, сколько необходимо, чтобы держать скорость. Допустим, у вас 75% ОМВ. Допустим, вы рекрутировали половину всех мышечных волокон. Рекрутированные ОМВ отрабатывают 15 сек за счет АТФ и КФ, затем мощность их начинает падать где-то наполовину, и дальше эти ОМВ работают только в аэробном режиме, и пока используют только жиры. Не через 40 минут, а прямо сейчас, на 1-й минуте будут работать за счет окисления жиров! Потому что в ОМВ митохондрии, когда работают, выделяют наружу цитрат, который ингибирует (подавляет) гликолиз, поэтому могут окисляться только жиры (химию процесса окисления описывает цикл Кребса). Значит, не прошло и 15 секунд, как начали окисляться жиры. И вот мощность упала, а вам-то задание держать 50% от максимальной. Тогда вы обязаны рекрутировать еще порцию мышечных волокон. Допустим, дополнительные 25% вы рекрутируете, тоже окислительные, только они еще не работали, и они свои первые 15 секунд отрабатывают на АТФ и КФ. Получается, что на АТФ и КФ вы бежите уже не 15 секунд, а 30. То есть вы 15 секунд бежали на АТФ рекрутированных вначале МВ, и еще 15 секунд на следующих, но часть работы уже выполняется за счет аэробной продукции. Эти окислительные включились в работу, истратили свои запасы АТФ и КФ, не полностью, а наполовину, а вот эта половина поддерживается за счёт ресинтеза, то есть уже за счёт окислительных процессов, за счет жиров. И при заданной 50-процентной мощности вы обеспечиваете где-то 30-35% за счет окислительного фосфорилирования. При такой мощности где-то через секунд вы выходите на предельные возможности этой мышцы в потреблении кислорода (она равна как раз 35% от максимальной мощности, которую эта мышца может развить). Это соответствует как раз АнП. Если нарисовать кривую потребления кислорода, то вы обнаружите плато, которое будет соответствовать АнП уже через 40 сек. Далее спортсмен будет рекрутировать ГМВ, но маленькими порциями, исходя из нормы мощности, которую вы задали. Вот он в течение минуты будет рекрутировать гликолитические. Они тоже сначала на АТФ и КФ работают, а потом за счет гликолиза. Включенные ГМВ минуту отработают, закислятся и снизят мощность почти до нуля. Поэтому придется включать новые ГМВ до тех пор, пока у вас есть их запас. Если он у вас большой, то можно минуты 3-4 так поработать. А тот, у кого запаса ГМВ нет, начнет снижать мощность, и откажется от выполнения задания. В итоге у тех, у кого ОМВ много, а гликолитических мало, кривая мощности поднимется, продержится где-то минуты полторы две, и обязательно упадет на уровень АнП, и так будет держаться долго. Тот, кто имеет больший запас ГМВ, при прочих равных условиях сможет дольше проработать на высокой мощности, и на какой-то определенной дистанции выиграет. Получается, что человек, имеющий много ГМВ, но мало окислительных, на относительно коротких дистанциях, допустим, 1-1,5 минуты, ещё может выигрывать запасом гликолитических. Но чем длиннее дистанция, тем менее важна вот эта лишняя мышечная масса (ГМВ). И когда время на дистанции уходит, допустим, за 5 минут, то получается, что надо на себе везти лишнюю массу. Из-за чего появляется специализация В велосипедном спорте на равнине лишний вес не имеет принципиального значения. А если это гора, то даже в велосипедном спорте начинает играть роль собственный вес, спортсмен начинает тратить энергию на то, чтобы везти в подъем лишнюю мышечную массу. Поэтому чем длиннее дистанция, тем «вреднее» эта лишняя масса, и надо от нее всеми способами избавляться. То же и в конькобежном спорте. Конечно, спортсмен в основном работает против ветра, но еще надо много энергии тратить, чтобы перемещать свое тело поперек дорожки, держать позу, а именно - везти свой собственный вес. Значит, и здесь вес начинает играть свою роль. Поэтому, если конькобежец везет на себе лишнюю мышечную массу, она мешает. На


8 дистанциях в 500 и 1000 м некоторая «лишняя» масса помогает, потому что мощный толчок помогают сделать еще и мышцы рук и туловища. Но чем длиннее дистанция, тем больше «лишняя» масса мешает. Поэтому там, где возникают проблемы «лишней» массы, и появляется какая-то специализация (спринтер - стайер). Но иногда это не принципиально, если у спортсмена сильные мышцы ног с большой долей ОМВ (как у Хайдена). Как и везде, существует простая модель и сложная. В сложной модели, вы видите, процессы по-другому разворачиваются, и даже можно объяснить, зачем нужны гликолитические волокна. Пока дистанция относительно короткая, и если эта лишняя масса не очень мешает, то это очень выгодно. Чем длиннее дистанция и чем больше нагрузка, связанная с преодолением собственного веса, тем вреднее становится избыток ГМВ. Центральные и периферические аэробные компоненты, их вклад в работоспособность Теперь рассмотрим зависимость работоспособности от центрального и периферического факторов (сердечно-сосудистой системы и мышц). Если рассматривать какое-то конкретное двигательное действие - велосипед, коньки, легкую атлетику (бег) или лыжи, то мы увидим, что в каждом конкретном упражнении участвуют определенные мышечные группы. Если посчитать их массу, то окажется, что в велосипедном спорте одна мышечная масса, в легкой атлетике побольше, а в лыжном спорте еще больше. Возникает вопрос: сколько эти мышцы потребляют кислорода? Чисто теоретически это очень просто посчитать: 1 кг мышечной массы, если она находится на пределе подготовленности, потребляет кислорода где-то 0,2-0,3 л/мин, если в работе участвуют все ОМВ. Дальше надо просто умножить эту цифру на ту массу, которая есть, при условии, что она максимально подготовлена. Что значит максимально подготовлена? Внутри этой мышечной массы одни ОМВ, миофибриллы и митохондрии находятся в таком соотношении, что больше уже ничего прибавить нельзя (миофибриллы все оплетены митохондриями, как в миокарде). И тогда получается, что для потребления 3 л кислорода нужно иметь 10 кг активной мышечной массы, а если нужно потреблять 6 л достаточно иметь только 20 кг активной мышечной массы. Теперь посчитаем, сколько кислорода может доставить сердце. Если принять, что 1 литр крови переносит 160 мл кислорода (при нормальном уровне гемоглобина), то, умножив это количество на минутный объём кровообращения, мы получим возможности сердца по доставке кислорода. У обычного человека, мужчины, ударный объём составляет порядка мл за один выброс крови. При пульсе 190 ударов в минуту получим 190 уд/мин * 130 мл * 160 мл = около 4 л/мин. Всё так и считается, достаточно просто. У супер-атлетов за один ударный цикл выбрасывается 240 мл, это соответствует 7-8 л/мин кислорода. Мы определили, что 20 кг мышечной массы могут потребить около 6 литров кислорода в минуту. Если у лыжника на ногах мышечная масса кг, и к этому добавить мышцы живота, спины, рук, то мы уйдем за цифру 30 с лишним килограммов. Сделаем поправку на то, что не вся эта мышечная масса будет потреблять кислород на пределе возможностей, и получим, что 40 кг активных мышц могут потребить кислорода около 8 л/мин. Вот столько должно перекачать сердце, чтобы полностью обеспечить мышцы кислородом, если эти мышцы максимально готовы. Таким образом, мы получили два предела. Первый из литературы известно, что перекачать 8 л/мин кислорода через организм с помощью сердца это цифра предельная, этой цифры практически ни у кого нет. В то же время, 8 л/мин кислорода потребить мышцами таких цифр тоже никто ещё не зафиксировал. Обычно потребляют где-то 6 л/мин, ну - 6,5 л/мин, цифры в 7 л/мин кислорода почти не появляется. Тестирование уровней потребления кислорода поможет построить планы тренировок


9 Поскольку работоспособность может лимитировать либо одно, либо другое, то для того, чтобы разобраться с тем, чего не хватает конкретному спортсмену его надо обязательное тестировать. Например, мы начинаем тестировать лыжников на уровне сборной команды, и получаем очень печальные цифры. Фиксируем показатели неоднократного победителя крупных российских марафонов (спортсмен каждый год в «десятке» на чемпионатах России), и видим: мышцы ног потребляют кислорода только 3,5 л/мин на уровне АнП это результат порядка 1 разряда в велосипедном спорте. А лыжник должен потреблять ногами столько же, сколько велосипедист МСМК, причем это абсолютная цифра, не на килограмм веса. (В велосипедном спорте это не принципиально, там больше важно, что приходится на лобовую площадь.) Спрашивается, а какое у него сердце? Если взять график ступенчатого теста, то на начальном участке, когда рекрутируются только ОМВ, наблюдается некая прямая между пульсом и мощностью. Потом эта кривая зависимости (потом кривая получается) начинает как-то изменяться. И, как правило, происходит увеличение темпа прироста пульса. Если продолжить начальный отрезок линии дальше, и вывести на пульс 190, то можно предсказать, что бы было с этим человеком, если бы он вышел на пульс 190, и при этом у него были бы только ОМВ. И тогда мы определили бы потенциальные возможности сердца по доставке кислорода к мышцам. (Подробнее об этом можно прочитать в следующем номере в разделе, посвященном интерпретации данных ступенчатого теста). Так вот, потенциальная производительность сердца оказывается у него 7 л/мин. Это означает, что наш спортсмен имеет прекрасное сердце, огромное сердце, его тренировать специально не надо, а мышцы, прежде всего ног, очень слабые, они в очень плохом состоянии, их надо готовить, чтобы они соответствовали нормативам международного класса. Чтобы этот лыжник показал хорошие результаты, ему надо где-то 4,5 л/мин потреблять ногами. С показателем 4,5 л/мин он бы в сборной уже устойчиво стоял. При этом пульс у него при потреблении кислорода 4,5 л/мин должен быть не 190 уд/мин, а 150, потому что должен быть запас, на котором руки будут работать. Хорошо, предположим, мы с ним в тесте получаем 4,5 л/мин на пульсе 150 уд/мин, и после этого начинается закисление, и он отказывается от работы. Тогда мы говорим, что ноги у него в хорошем состоянии (4,5 л/мин для лыжника вполне достаточно). Потом начинаем тестировать руки, и оказывается, что руки у него потребляют где-то 1,5 л/мин, больше не будут потреблять (это из нашего опыта известно). Он потребляет руками 1,5 л/мин, мы прибавляем их к 4,5 л/мин ног, и получаем потребление кислорода равное 6 л/мин. Затем делим на его вес 70 кг и получаем 85 мл/кг/мин это уровень олимпийских достижений. Дальше разбираемся, что с ним нужно делать, чтобы достичь таких показателей. Так вот, первый вывод: поскольку сердце у него большое, и может перекачать кислорода 7 л/мин, то этому человеку не надо делать вкатывание. Под вкатыванием понимаются объёмные длительные тренировки продолжительностью от 3 до 6-8 часов в день на относительно низком пульсе (уд/мин, близко к 120). Если человек будет по 8 часов в день кататься при таком пульсе, то сердце начнет дилятировать (расширяться) и может значительно увеличиться в объеме. А этому человеку нужно заниматься в первую очередь мышцами ног - именно они ограничивают его возможности. А у другого может оказаться наоборот. Вот вам следующий пример: еще один молодой перспективный лыжник, мы его тестируем, у него картина такая: пульс 190 уд/мин и 4,5 л/мин потребляет ногами, но пульс-то Всё, ему руки нельзя добавлять, он на пределе, сердце маленькое, слабое. Это было как раз в 2000 году, когда он ряд гонок выиграл и, как говорят, «капнул». Его больше в сборную брать не стали - сердце не держит. Никто же этого не знает, но чувствуют спортсмен начинает проигрывать, не держит тренировочных нагрузок. Сердце маленькое. Наконец, дали ему отдохнуть, выбросили все объёмные нагрузки, оставили только интенсивные, спринтерского характера. Сердце постепенно вылечилось, за 4-5 месяцев стало нормальным, стало свои 8 л/мин качать, вместо 4,5 л/мин. Потребление кислорода в руках добавили, чуть ли не в 2 раза, а ноги у него и так хорошие. Он свои 4,5 л/мин ногами как


10 потреблял, так и потребляет, но на пульсе не 190 уд/мин, а 160, потом руки еще добавляет, и он выходит на пульс 190, на этом пульсе можно бежать 10 км. У него был явный недостаток сердца, но причина не в том, что сердце плохое, ему надо было просто дать восстановиться, чтобы прекратились дистрофические явления, и он вернулся в нормальное состояние. Сердце не машина Теперь остановимся подробнее на том, что происходит с сердцем. Поймите, сердце не машина, его достаточно просто необратимо испортить неправильными тренировками. Тренируясь, мы вместе с мышцами тренируем и сердце, добиваясь увеличения минутного объема кровообращения. Сердце увеличивается, гипертрофирует. Что мы можем внутри сердца изменить? Диаметр каждого отдельного мышечного волокна, и можем поменять длину МВ. Соответственно, различают два типа гипертрофии сердца: L-тип, при котором сердечная мышца растягивается, ее мышечные волокна удлиняются, тем самым увеличивается объем сердца; и D-тип, это поперечная гипертрофия, при которой увеличивается толщина стенки сердца, то есть его сила. Для увеличения объема сердца используются длительные тренировки на пульсе, соответствующем максимальному ударному объему. Этот показатель индивидуален. Обычно ударный объем начинает резко расти при пульсе 100, к 120 сильно увеличивается, у некоторых растет до пульса 150. Длительная тренировка при максимальном ударном объеме это, условно говоря, упражнения на «гибкость» для сердца. Мышцы гонят кровь, и сердце этим потоком крови начинает растягиваться. Следы такого растягивания остаются, и постепенно сердце значительно увеличивается в объеме. Его можно увеличить раза в 2, а на 35-40% почти гарантированно, поскольку сердце - это «висячий» орган, в отличие от скелетных мышц, и растягивается достаточно легко. Вот для этого и надо делать вкатывание. Но тренеры не знают, что делают, а говорят так: "Мы наращиваем базу". Какую базу? Никто не знает четко, что такое "база". Я сам был таким же в своё время, так же думал. Раньше я не понимал в чем дело, но "базу" я должен был создать, катался по 8 часов в день. А на деле это растягивание сердца. Чем дольше оно будет находиться в этом состоянии, тем большие следы этого растягивания будут оставаться. В конце концов, его можно очень сильно растянуть. Знаменитый бельгийский велосипедист Эдди Меркс, пятикратный победитель велогонки "Тур де Франс", в какой то мере является эталоном. Когда он закончил карьеру, объём сердца у него был 1800 мл, (через 10 лет оно уже было около 1200 мл). Но даже и 1200мл - это очень много, у нормального человека объём сердца около 600 мл. D-тип гипертрофии стимулируется работой при пульсе, близком к максимальному 180 и выше. При этом сердце в паузах не успевает раскрыться полностью, не расслабляется, возникает, так называемый, дефект диастолы. В миокарде возникает локальное закисление, являющееся одним из факторов, стимулирующих рост миофибрилл в мышце. Если ты регулярно тренируешься с пульсом, то ты либо гипертрофируешь, либо дистрофируешь миокард. Правильная схема интервальной тренировки такова: 60 секунд разгон пульса, и 30 секунд - поддержание пульса 180, это классическая немецкая интервальная тренировка, они еще в 70-е годы показали, что происходит гипертрофия миокардиоцитов. Бежать надо на скорости, примерно соответствующей бегу на 3000 м (3000 м это бег с мощностью, которая чуть-чуть превышает мощность на уровне МПК), это предельная 9-минутная работа. Однако это «запрещенный путь», и использовать его можно крайне осторожно. Если много таких тренировочных упражнений делать в течение одного тренировочного занятия, а потом повторить это только через неделю, сердце начинает гипертрофироваться и вреда не будет. Если хотя бы на одну тренировку больше сделать, то всё, могут начаться дистрофические процессы. Вообще, D-гипертрофия для циклических видов спорта - не главное. Да, такое сердце может сократиться с большей силой, больше вытолкнуть крови. Но все-таки это имеет минимальное


11 значение, главный фактор - дилятация. Если сердце эластичное и может растягиваться, то оно накапливает энергию упругой деформации. Потом, за счет этой энергии, оно сильно сокращается, а дальше надо, чтобы аорта сработала. Чтобы она тоже растянулась и захлопнулась. Тогда "два сердца" появляется. Сердце, как таковое, и аорта. Что такое дистрофия миокарда и как ее зарабатывают? Когда мы сидим в покое, то каждая клеточка сердца сокращается что есть силы, потому что миокардиоциты всегда работают на пределе своих возможностей. По мере того, как ты начинаешь бежать, кровь начинает приливать к сердцу (мышцы гонят кровь), сердце начинает растягиваться, а потом сокращается, опять растягивается, затем сокращается. А когда пульс достигает уд/мин, оно не успевает растянуться, расслабиться полностью. Короче говоря, если пульс 200 уд/мин, то диастола практически исчезает. То есть сердце не успевает расслабиться, как опять надо сокращаться. В итоге возникает внутреннее напряжение сердца, и кровь через него начинает плохо проходить, начинается гипоксия. А гипоксия - значит нехватка кислорода, значит, митохондрии перестают работать, начинается анаэробный гликолиз. Молочная кислота в сердце образуется. И если это закисление долго продолжается, например, часами, то начинается разрушение митохондрий и других органелл. А если это продолжается очень долго, то может наступить некроз отдельных миокардиоцитов, то есть клеток сердечной мышцы. Это микроинфаркт. Потом каждая такая клеточка должна переродиться в соединительную ткань, а эта соединительная ткань плохо растягивается. Она вообще не сокращается и является плохим проводником электических импульсов, она только мешает. Вот это явление называется дистрофия миокарда, спортивное сердце. Есть такие данные - у внезапно умерших спортсменов брали сердце, смотрели, и находили там огромное количество микроинфарктов. Это подтверждает то, что я сейчас говорил. В каком случае эти изменения могут быть обратимыми? Предположим, что молодые спортсмены на сборах начинают гоняться за старыми. Неподготовленный спортсмен, например, начинает ехать с Прокуроровым, у Прокуророва пульс уд/мин, а у молодого 190. Для Прокуророва пробежать по дистанции 30 км проще пареной репы, а молодой пробежит 30 км на пульсе 190 уд/мин и будет иметь дистрофию миокарда. Поэтому такой спортсмен вываливается из сборной, а Прокуроров уже 20 лет там находится. Что происходит? При таком режиме тренировок молодых спортсменов начинают возникать эти отрицательные явления в сердце, мощность теряется, и к тому же не выдерживает эндокринная система. Молодой спортсмен находится в стрессовой ситуации на каждой тренировке, что требует выделения в кровь огромного количества гормонов. Поэтому резервные возможности желез эндокринной системы исчерпываются. Адреналин, норадреналин перестают нормально выделяться, человек находится в той стадии стресса, когда наблюдается истощение. Поэтому человек чувствует слабость. И если продолжать его гонять, то будут очень сильные повреждения. Вот на сборах человек почувствовал себя плохо, его сразу отчисляют, и он выживает таким образом. А если его оставить на сборах, продолжать мучить, то можно «загнать». Если уже пошли микроинфаркты, то этот человек как спортсмен может закончиться. К сожалению, это не лечится, это на всю жизнь Но если миокардиоциты на грани гибели, но пока живы, то еще можно всё восстановить. Если в этот момент остановить тренировки, не дать развиться истощению, дать спортсмену возможность восстановить эндокринную систему, то и в сердце еще не будет таких больших изменений. Сердце постепенно начнет восстанавливаться, так как каждый миокардиоцит еще живой, он в итоге выживет и останется нормальным. А те клетки, которые получили повреждение, они просто погибнут. Дистрофия миокарда может являться причиной внезапных смертей у спортсменов или ветеранов спорта из-за остановки сердца. В конце концов, случаются такие ситуации, что в сердце отдельные участки никак не могут расслабиться, плохо идет кислород к отдельным клеткам. Накопившиеся изменения в проводящей системе приводят к нарушению сердечного ритма, а иногда и к остановке сердца. Большинство внезапных смертей у спортсменов или людей, которые увлекаются физкультурой, происходит ночью, не на соревнованиях. Ночью


12 они умирают, после соревнований. Всё равно, первопричиной этого были микроинфаркты, которые возникали по ходу тренировочных занятий, неправильной тренировки. Как определить наличие дистрофии миокарда у живого человека? Чтобы дать правильную интерпретацию, нужно определить (тестировать) производительность сердца, и оценить физические размеры сердца. Если у человека маленькое сердце с точки зрения перекачивания крови, а на рентгеновском снимке мы увидим большое сердце, тогда это дистрофия миокарда. Такие проблемы с сердцем встречаются довольно часто. У меня был такой случай. Мы обследовали бегуна-марафонца. Данные говорят - слабое сердце: у него пульс 190 на АнП. Для проверки предположений о размере сердца направили его на УЗИ. Прошел обследование огромное сердце. Тогда стало всё понятно. У него такое сердце, как у пловцов 2-х метровых. А кровь его сердце качает неэффективно из-за дистрофии миокарда. Вопрос: - Если мышцы сигнализируют о закислении «затекают» или болят, то что, сердце не сигнализирует? - Что касается сердца, то оно более-менее существенно начинает закисляться только после пульса 190, когда дефект диастолы возникает, и, естественно, пока действительно никаких особых болей человек не ощущает. Но если будет закисление очень сильное, пульс порядка, могут возникнуть ощущения болевые. Но я думаю, что главное все-таки это продолжительность выполнения упражнений с дефектом диастолы. Сама продолжительность и даже легкое закисление будут приводить к каким-то некротическим изменениям внутри отдельных миокардиоцитов. Явных болевых ощущений не будет слишком это аэробная мышца, там много митохондрий, они очень быстро поглощают ионы водорода. Поэтому ожидать, что будут какие-то болевые ощущения трудно. А вот когда у тебя ишемия миокарда, и когда у тебя тромб, инфаркт начинается, вот эти боли и возникают, это естественно. На тренировках этого не почувствуешь. Детское сердце. Таланты в опасности Теперь несколько слов о проблемах тренировки детей. Парадокс в том, что талантливого ребенка загубить даже проще, чем обыкновенного. Приходит ребенок, у него нормальное сердце, он с лет начинает тренироваться, и сердце у него пока нормальное. Потом начинается пубертатный период (период полового созревания), мышцы быстро растут, а сердце не успевает расти. Если этот человек талантливый, то у него ОМВ очень много (медленные быстро становятся окислительными, а быстрых у него вообще нет), то есть это классический стайер, талант. Один на миллион человек. Сердце пока маленькое, а мышцы великолепные. Так вот, такой человек может на пульсе 200 бегать буквально часами. Сердце маленькое, оно при этом закисляется, находится в состоянии дефекта диастолы, а мышцы не закисляются. Проходит 13 лет, 14, 15, 16 лет, дистрофия миокарда уже есть, но он чемпион России в легкой атлетике, в лыжных гонках с дистрофией миокарда. Потом исполняется лет, надо идти в сборную команду, а у него сердца нормального нет, всё. Поэтому у нас в легкой атлетике вообще нет бегунов. Потому что все ребята проходят через детские спортивные школы. А так, чтобы как Куц пришел из морского флота и пошел бегать в 21 год, таких людей вообще у нас нет. А все, кто приходят из детских спортивных школ, они все изуродованные, у них плохие сердца. Так я объясняю ту ситуацию, которая возникла у нас в легкой атлетике. Думаю, что в лыжном спорте будет то же самое. А может и еще хуже, потому что там и руки, и ноги работают. Кислорода нужно огромное количество, все время величины пульса огромные (уд/мин), и они легко могут сердца испортить. Вопрос: - А что же тогда делать? - Тяните резинку, технику ставьте, в футбол играйте. А иногда, очень редко, участвуйте в соревнованиях один раз в 2 недели, раз в неделю, не чаще. Тогда не будет никаких проблем, результаты будут хорошие, и сердце будет сохранено. Постепенно объёмы будут наращиваться, сердце будет догонять мышцы, и после лет можно начать работать с сердцем. Скажем, 2-3 года выполняют «вкатывание», сердце растягивают, и к годам можно приступить к тренировке в основном мышц (снизить объемы нагрузок). Если человек талантлив, природа наградила его изначально большим


13 сердцем и хорошими мышцами, то к этому возрасту это будет готовый МСМК. (продолжение следует) Беседовали: Эдуард Иванов, 34 года, врач высшей категории, кандидат медицинских наук; Александр Вертышев, 39 лет, программист, лыжник-любитель. Знаменитый бельгийский велосипедист Эдди Меркс, пятикратный победитель велогонки "Тур де Франс", в какой-то мере является эталоном. Когда он закончил карьеру, объём сердца у него был 1800 мл, (через 10 лет оно уже было около 1200 мл). Но даже и 1200мл - это очень много, у нормального человека объём сердца около 600 мл. У лыжников, как и у велосипедистов, конькобежцев, практически не наблюдается специализации. Лариса Лазутина (2) за свою долгую карьеру одинаково хорошо бегала и 5- километровую гонку (женский спринт), и 30-километровый марафон. Юлия Чепалова (1) пошла даже дальше: выиграв в блестящей манере 30-километровый марафон на Олимпиаде в Нагано, через четыре года в Солт-Лейк-Сити она станет чемпионкой в 1,5-километровом спринте. Баланс между сердцем и мышцами. ЧАСТЬ 2. В первой части статьи мы рассмотрели вклад в работоспособность по отдельности сердца и мышц. Было показано, как посчитать потребление кислорода мышцами и производительность сердца по доставке кислорода. Ограничивать возможности спортсмена могут либо сердце, либо мышцы. Мы рассматривали это на примере двух спортсменов. У одного из них слабым звеном были мышцы ног, у другого было уставшее сердце. Конечно, в идеале нужно добиваться соответствия возможностей мышц и сердца, баланса. Рассмотрим Мюллега. По субъективным оценкам у него предельный баланс. Мышечная масса за 80 кг, очень крупные мышцы на спине, на руках, на ногах, и сердце очень мощное. Судя по субъективной оценке, он бежит дистанцию 50 км только на ОМВ, по-другому 50 км не бегают. Я прихожу к выводу, что у него МВ только окислительные, гликолитических практически нет. Значит, у него пульс уд/мин и есть АнП, он на этом пульсе всё время бегает. Легочная вентиляция постоянная порядка 140 л/мин, что соответствует как раз 7-7,5 л/мин ПК. Если разделить этот показатель на массу тела, то получаем мл/мин/кг на уровне АнП. Поэтому он у всех всё и выигрывает. По литературным данным олимпийские чемпионы имеют МПК мл/мин/кг. Конечно, надо учитывать и другие факторы. Например, один спортсмен повысил гемоглобин в крови, а другой не смог. Поэтому при одинаковой мышечной массе и примерно одинаковых возможностях на равнине, в среднегорье тот, у кого кислорода в крови не хватает, конечно, проигрывает, начинает закисляться. Вернемся к проблеме баланса на примере бега. Недавно показывали по ТВ международные соревнования по кроссу. Там лидировали двое - худой негр и мускулистый, выиграл мускулистый. Худые теоретически должны всё проигрывать. Но эфиопы и кенийцы пока всё выигрывают, потому что они приезжают с гор, у них очень высокий уровень гемоглобина, а сердце не является лимитирующим звеном. А на самом деле кроссы, все длинные дистанции должен выигрывать человек с мускулистыми ногами и соответствующим сердцем, потому что у него есть чем отталкиваться, у него больше длина шага. В данном случае мы наблюдаем классический вариант - появился парень, у которого сердце хорошее и хорошие крупные мышцы ног. Вот это идеальный бегун, с моей точки зрения. А этот худой на марафоне, возможно, и будет чувствовать себя легче, но мускулистый всё равно должен ему привезти несколько минут, если будет нормально подготовлен. То есть, если у него гликолитических,


14 лишних МВ будет мало, тогда он будет так же как худой бежать, только мощнее толкаться, а значит - экономить энергию на лишних движениях конечностей. Итак, наша цель баланс между возможностями сердца и мышцами. Для построения стратегии тренировок, планов, необходимо в первую очередь тестирование, определение состояния систем организма. Только в этом случае можно определить слабое звено и принять необходимые меры по его подтягиванию. Или определить, что у спортсмена достигнут баланс, и спланировать тренировки так, чтобы достичь баланса на более высоком уровне. У спортсменов высокой квалификации, которых я в лаборатории тестировал, как правило, наблюдается баланс между производительностью сердца и возможностями мышц по потреблению кислорода. Можно предположить, что если взять Прокуророва или Иванова, и протестировать их, то у них окажется полный баланс между сердцем и мышцами. И если это действительно так, то можно говорить, что спортсмены практически достигли своего потолка, поскольку у людей, которые выполняют такой колоссальный объем работы, как лыжники на уровне сборной команды, размеры сердца достигают своего генетического предела. И, по большому счету, такие спортсмены как бы бесперспективны. Поэтому в лаборатории надо тестировать многих спортсменов, находить тех, у кого огромные сердца, способные перекачать с кровью 8 литров кислорода в минуту на пределе своих возможностей, отбирать их как основную часть сборной команды, и подводить мышцы под такие возможности работы сердца. Баланс достигнут, что дальше? Это классическая ситуация для спортсменов-старожилов национальной сборной команды. У большинства из них есть баланс между сердцем и мышцами. Что делать дальше? А дальше нужно либо уходить в марафон, либо в спринт. Старики в основном в марафон уходят, они ничего другого делать не умеют. Если же планируется перейти в спринт, тогда необходимо нарастить мышцы, чтобы был запас, на чем бежать на финише (с образованием кислородного долга). Эта дополнительная мышечная масса должна до конца исчерпывать кислород в крови, и при этом не очень сильно закисляться. Естественно, такой человек выигрывает спринт. Это два распространенных варианта, что сейчас и происходит. А на самом деле нужно искать резервы в том, чтобы расширить сердце еще дальше. Скелетные мышцы всегда можно увеличить. Я гарантирую, что у любого человека можно мышцы нарастить. Посмотрите на штангистов - нет проблем. Поэтому, если достигнут баланс, то начинать надо с сердца. Потому что без увеличения размеров левого желудочка сердца ничего не получится. Пределы человеческих возможностей Существуют наследуемые пределы. Один из них - это количество клеток в сердце, которое наследуется. Одному дано заведомо маленькое сердце, а другому заведомо большое. Можно, конечно, и маленькое сердце очень сильно растянуть, но если у другого большое сердце, то его в растягивании левого желудочка догнать трудно. И тут уже возникает проблема отбора. То есть на высшие спортивные достижения в лыжах очень сильно влияет наследственный фактор. С точки зрения мышц тоже существует наследуемый фактор. Во-первых, это число мышечных волокон. Рост мышц идет за счет внутренних структур МВ, а не за счет увеличения их числа. (Гиперплазия, то есть увеличение числа мышечных клеток - это очень редкое явление, не превышающее 5%, и то у представителей силовых видов спорта). Вовторых, это биохимические характеристики мышечных волокон. Уже всеми доказано, что существует наследование АТФ-азной активности мышц и скорости сокращения. Есть гипотеза, что фермент анаэробного гликолиза, превращающего пируват в лактат, называемый ЛДГ-мышечного типа, тоже наследуется. То есть наследуется способность


15 мышц становиться гликолитическими. А чтобы превратить мышечные волокна в окислительные, надо просто тренироваться. При этом синтезируется другой фермент ЛДГсердечного типа. ЛДГ-мышечного типа и ЛДГ-сердечного типа не просто должны быть в равенстве, ЛДГ-сердечного типа должно быть намного больше. Но у одного переделка МВ получается быстро и легко, потому что ему по наследству досталось мало ферментов гликолитического характера. А другому человеку их досталось огромное количество, и превратить его в аэробного человека очень тяжело. Например, одаренный человек может достичь предельного насыщения мышц митохондиями (состояния пика спортивной формы) примерно за 100-дневный срок. А неодаренному потребуется гораздо больше времени. Когда у тебя всего 20% окислительных МВ, то остальные 80% превратить в окислительные, да еще бороться против природы человека очень тяжело. Есть также предположение, что наследственность во многом определяет способность спортсмена выдерживать тренировочный процесс без заболеваний (например, простудного характера). Кто-то просто не сможет выполнить необходимые тренировочные объемы, чтобы реализовать свои потенциальные возможности. Подробнее о влиянии наследственных и средовых факторов можно прочитать в книжке «Определение одаренностей и поиск талантов в спорте», которую мы написали с М.П.Шестаковым. («Определение одаренности и поиск талантов в спорте». Авторы - Шестаков М. П., Селуянов В. Н., Издатель ЗАО "СпортАкадемПресс". Купить можно через Интернет-магазин Как увеличить производительность сердца, как его растянуть? Давайте будем рассуждать так: надо увеличить ударный объём сердца, скажем, на 20%. Сколько нужно для этого тренироваться? По некоторым нашим данным получается: Если нужно увеличить на 20%, то надо тренироваться хотя бы 3-4 раза в неделю по 2 часа (на пульсе уд/мин, при котором достигается максимальный ударный объем). Если нужно 50-60% прибавить, тогда надо тренироваться 2 раза в день по 2 часа, хотя бы 3-4 дня в неделю. Чтобы 100% гипертрофию получить, то есть сделать сердце в 2 раза больше, то уже необходимы очень большие объёмы. Это каждый день по 4, по 5 часов. А если нужно суператлета сделать, то тогда надо тренироваться по 5-8 часов каждый день. Такие тренировки нужно продолжать в течение примерно 4-5 месяцев. После этого у человека будет просто растянутое сердце. Причем, поддерживаться это состояние будет достаточно легко, а вот чтобы сердце на всю жизнь таким осталось, этого не произойдет. Если перестать тренироваться, то сердце будет постепенно уменьшаться. У бывших олимпийских чемпионов за 10 лет сердце уменьшается в объеме на 60-80%, хотя масса сердца почти не изменяется. Например, у меня такая ситуация: если я плохо тренируюсь, у меня ударный объём сердца на пульсе уд/мин где-то 160 мл. После 3 месяцев тренировок по часа 3 раза в неделю я вышел на уровень мл. Во время тренировок, направленных на увеличение ударного объема сердца, необходимо поддерживать силу основных групп мышц. Для этого существуют очень простые пути. Продолжая тренироваться по 5-6 часов в день, (неважно на чем - велосипед, лыжи, лыжероллеры, плавание - это не имеет значения), обязательно нужно выполнять статодинамические упражнения для основных мышечных групп (лучше на ночь). Необходимы две суперсерии, как мы называем, это будет тонизирующая работа, и она будет держать мышцы. (Про силовую тренировку см. ниже). Вслед за этим обязателен прием пищевых добавок, либо анаболических стероидов. Самое лучшее анаболические стероиды в терапевтических дозах. Они действуют мощно и действительно поддержат здоровье, а это самое главное, и мышцы будут хорошие. А если нельзя этого делать, из-за допинг-контроля или других причин, тогда необходимо использовать те добавки, которые разрешены,


16 различные растительные анаболизаторы. Ибо без этого мышцы не выдержат. Мышцы начнут уменьшаться, если не будет помощи. А если мышцы начнут уменьшаться, то будет риск получить дистрофию мышцы сердца. Потому что наш организм каким-то странным образом устроен: он сначала бережет мозг и сердце, а всё остальное потом. Поэтому, если мышцы сохранятся при такой работе, то сердце на 100% сохранится. Увеличение ударного объёма сердца сказывается на пульсе в покое, он становится намного реже. У нормального человека пульс уд/мин. Когда сердце более или менее гипертрофировано, пульс снижается до ударов. А если сильно гипертрофировано, у лыжников это бывает, то 40-42, потом может даже до 30 уд/мин дойти, бывают и такие случаи. Если пульс в покое 30, то наверняка у спортсмена огромное сердце. Психология, эмоции частично искажают эту красивую картину. Как только начинаешь немного кататься, то что-то с сердцем начинает происходить, повышается тонус блуждающего нерва и т.п. Поэтому, оно пока не растянутое, а пульс в покое снижается. Но если человек регулярно тренируется, тогда эти симпатические и блуждающие составляющие не так сильно влияют. У регулярно тренирующегося лыжника уровня МСМК пульс должен быть меньше 40. А для всех остальных лыжников, которые более или менее прилично едут, - в районе 50±5 ударов (от 45 до 55). Минусы традиционной системы подготовки лыжников-гонщиков. Плохо в ней то, что все лыжники тренируются по стандартной схеме. Эта схема известна лет тридцать. И эти три десятка лет все делают одно и тоже. Не будем рассматривать летние тренировки, они чаще больше вреда приносят из-за подготовки к летним соревнованиям на лыжероллерах. Потом начинается период вкатывания, когда едут, например, в Воркуту. Первый сбор на снегу. Они начинают кататься, делают по 2-3 тренировки в день, набирают суммарный объем езды по 5, 6, 8 часов в день. И так на протяжении 2, 3, 4 месяцев, чем больше, тем лучше. Это и есть главный этап, если лыжник его не пройдет, то потом он из сборной команды вывалится. Что на самом деле они делают? Они не базу создают выносливости, они увеличивают, растягивают сердце. Ну и что же в этом плохого, спрашивается? Плохо то, что используются одни и те же средства для всех, без детального учета индивидуальных особенностей спортсменов. Например, едут вместе 5 человек. И если из этих пяти при темповой тренировке у одного пульс будет 190 уд/мин, а у одного или двух пульс будет 150 уд/мин, то в результате тот, кто бежит на пульсе 190, через месяц будет «мертвым». Начнется дистрофия миокарда, будут перебои пульса, по утрам будет высокий пульс или может быть редкий, но на тренировке будет уже высокий пульс. Спортсмен будет перетренирован. А тот, кто бегал на пульсе 150 уд/мин, спокойно набирает спортивную форму. Затем наступает предсоревновательный период, начинают увеличивать объём работы высокой интенсивности. Начинают тренировки на пульсе уд/мин уже для основного состава. Но этот период продолжается недолго, месяц, поэтому сердце еле-еле, но выдерживает. Потом начинаются соревнования, и объёмы снижаются. И люди могут еще пару месяцев кататься без особого вреда, но некоторые все равно теряют спортивную форму. В конце концов, остаются некоторые спортсмены с очень большими сердцами. А с точки зрения мышц никакой особой подготовки вообще не ведется. Сам период вкатывания приводит к тому, что мышцы «исчезают». Затем, когда начинают предсоревновательную подготовку, мышцы чуть-чуть начинают расти. И потом, если сердце выдержит, мышцы начинают расти во время соревнований. В это время чередуется работа и отдых, поэтому мышцы немножко наращиваются, и можно к концу сезона набрать приличную спортивную форму. Вот что обычно происходит. Все особенно хорошо получается, если спортсмены принимают запрещенные анаболические стероиды. Длительная тренировка с техникой, наиболее близкой к соревновательной деятельности, уменьшает размер «лишних» мышц. В этом смысле есть польза от вкатывания. Всё, что тебе не нужно, уйдет. Посмотрите на фотографию Бьорна Дэли - вы увидите человека, у которого узкая специализация. На фотографии виден живот квадратики, видна рука бицепса нет,


17 гипертрофии у передней дельтовидной нет, видна крупная трехглавая, причем не вся, а только одна головка (длинная) и широчайшие мышцы. У этого человека больше ничего особого нет, - ну, на спине еще мышцы есть, лопатку надо держать, там мышцы хорошие (ног на фотографии не видно). Почему выпал из сборной рассмотренный нами первый спортсмен (см. начало статьи в «Л.С.» 21)? У него были слабые ноги. На объёмных нагрузках он потерял мышцы. Высокопороговые двигательные единицы потеряли митохондрии, стали гликолитическими. Поэтому даже при небольшом повышении скорости спортсмен начинает закисляться. Сердце в этом случае работает на высоком пульсе. То есть он за счет сердца начинает бежать, и сердце начинает дистрофироваться. А причина - у него необходимые скелетные мышцы не развиты. Всем известно, что на одинаковую тренировку разные спортсмены реагируют по-разному. Это не секрет, все это знают. Тем не менее, тренировочная программа для группы подгоняется под какой-либо определенный, удобный тип спортсмена или определенную модель. А что следовало бы делать? Вместо того, чтобы издеваться над всеми людьми одинаково, надо издеваться конкретно, индивидуально. То есть, берешь всю сборную, тестируешь, определяешь, у кого большая работоспособность сердца, у кого маленькая. Если сердце маленькое, то либо принимаешь медицинские меры, лечишь сердце, даешь ему возможность отдохнуть. Либо принимаешь решение: маленькое, потому что он мало тренировался, не был никогда на сборе в Воркуте. Теперь он должен пройти хотя бы один 4- месячный период вкатывания, чтобы сердце «раскачать». А кому-то сердце раскачивать больше не надо, а необходимо мышцами заниматься. При хорошо тренированном сердце объёмы не нужны, потому что смысл больших объёмов увеличить размеры сердца. Внутри мышц при таких тренировках ничего не происходит. Всё время включаются одни и те же мышечные волокна, окислительные, они на пределе тренированности, они никогда лучше не будут от динамических упражнений. Это талантливые люди, у них и так полно ОМВ, они уже хорошо проработаны, а они эту часть мышц мучают и мучают. С этими, низкопороговыми двигательными единицами, всё в порядке, надо самые верхние «мучить». А как только начинаешь на них работать, выходишь на большой пульс, значит, можешь получить дистрофию миокарда. Все это знают, поэтому вкатывания на большом пульсе не делают. Все знают, что погибнет человек. Поэтому возникает проблема тренировочных нагрузок для таких спортсменов. Лыжи должны использоваться для того, чтобы технику восстановить, еще для чего-то, а основная работа должна быть в зале. Они должны идти в тренажерный зал и увеличивать силу мышц ног, рук и т.д., прежде всего рук, живота. И заниматься проработкой мышц переделкой высокопороговых МВ в окислительные. О том, как это лучше делать - немного ниже. Интерпретация данных ступенчатого теста. Как мы уже говорили, чтобы определить, что нужно делать с конкретным спортсменом, необходимо его тестировать. Основным инструментом тестирования служит так называемый ступенчатый тест. По его результатам можно многое сказать о состоянии спортсмена. Основная идея теста выполнение работы со ступенчато повышающейся мощностью до отказа. Длительность каждой ступеньки (работы с фиксированной мощностью) должна быть, например, 2 минуты. В этом случае к концу ступеньки возникает новое состояние, и показатели пульса будут соответствовать заданной мощности. В лабораторных условиях тест проводится на велоэргометре, на стадионе это бег со ступенчато повышающейся скоростью. Число «ступенек» - до 20. В лабораторных условиях возможно попутно измерять легочную вентиляцию или уровень лактата в крови. В сочетании с данными пульса любой из этих показателей поможет установить уровни АэП и АнП.


18 По результатам теста строится график, по вертикальной оси откладываются значения ЧСС, по горизонтальной оси - мощность (или скорость). Теперь мы посмотрим, как можно интерпретировать такие графики. При повышении нагрузки пульс будет изменяться следующим образом. Пока рекрутируются ОМВ и, соответственно, потребляются только жиры, дыхательный коэффициент очень низкий - 0,7-0,75. То есть кислорода потребляется больше, а углекислого газа выделяется меньше. Соответственно, лишнего углекислого газа в крови почти нет, только то, что образуется по ходу окисления жиров. А раз концентрация углекислого газа мала, то нет требования к дыханию, спортсмен дышит спокойно и, соответственно, сердце не стимулируется к работе. Когда рекрутируются только ОМВ, на этом участке на графике наблюдается прямая между пульсом и мощностью. Когда мощность повышается, и спортсмен начинает рекрутировать ГМВ, мышцы и кровь начинают закисляться, и пульс сразу начинает повышаться быстрее, кривая графика резко уходит вверх. Этому моменту соответствует точка перегиба (см. рис. 1, точка А). Эта точка обычно соответствует АэП. Такая картина наблюдается у плохо подготовленных людей (на графике это красная сплошная линия). Рисунок 1. У подготовленного спортсмена, имеющего много ОМВ, типовой график будет выглядеть иначе (см. рис. 1, сплошная зеленая линия). У него начальная прямая графика будет продолжаться до пульса порядка, а затем начнет даже загибаться вправо от прямой. Выше пульс просто не растет. Почему это происходит? Из-за того, что у спортсмена много ОМВ, закисление мышц, которое начинается в оставшихся гликолитических МВ, слишком мало. Сердечно-сосудистая система уже имеет слишком большое возбуждение изза того, что большая мощность работы выполняется, мышцы сокращаются с очень большой силой. И сердце на такое слабое закисление просто не реагирует. Поэтому рекрутирование дополнительных двигательных единиц не приводит к росту ЧСС. Точку перегиба на таком графике (см. рис. 1, точка B) часто называют точкой Конкони, и связывают с АнП. На самом деле эффект Конкони никакой связи с АнП не имеет и, к сожалению, вошёл в практику спорта безо всяких на то оснований. Дело в том, что Конкони проводил свои исследования на квалифицированных бегунах, у которых подготовка была на уровне КМС и МС. Что такое бегун уровня МС это человек, у которого неразвитые мышцы, а АнП практически равен МПК. Поэтому, как только он включил все свои ОМВ, а гликолитических у него очень мало, сердце больше не возбуждается, пульс при этом уд/мин. Чтобы сердце вышло на пульс, нужно очень сильно человека закислить, а эти люди не могут закислиться. Их сердце перестаёт увеличивать ЧСС, они еще две ступеньки лишние отработают и говорят: "всё, отказываюсь от работы, мышцы не тянут". А у спортсменов, имеющих хорошее сердце и неподготовленные мышцы, эффект Конкони не наблюдается, у них нет такого явления. У спортсменов, имеющих много ГМВ, пульс начинает расти вверх, никаких переломов и западений вниз нет. У 80% спортсменов эффект Конкони наблюдается, и точка Конкони даже совпадает с АнП, а у 20% либо она вообще отсутствует, либо нет никакого совпадения. В связи с тем, что на графике теста неподготовленного спортсмена нет эффекта Конкони, а АнП есть, то явление не воспроизводится, а значит, те причины, на которых это явление теоретически основывается, отсутствуют. Логика такая: если есть эффект Конкони, то есть АнП, есть 4 ммоль/л лактата. Где здесь это? Вообще нет никакого перелома, всё идет только вверх (см. рис. 1, красная сплошная линия). Отсюда вывод: эффекта Конкони не существует в природе, есть некто Конкони, который что-то увидел, обозвал это своим именем, приписал несуществующую в природе взаимосвязь. Явление загиба графика вниз особенно выражено у спортсменов-ветеранов. Лыжникиветераны, когда крутят педали велосипеда, вообще не могут выйти на большой пульс. Они


19 регулярно тренируются, у них большие сердца, а ноги дряхлеют, они относительно мало тренируются. Сердце в этом случае хорошее, если ты сделал его большим, оно таким и останется. Если перестать тренироваться, оно может «скукожиться», но достаточно несколько тренировок сделать и оно опять большим становится. Начинаем тестировать такого лыжника, он начинает крутить педали крутит, крутит, доходит до пульса 150 уд/мин, и говорит: "Всё, не могу." «Как не можешь? Пульс всего 150!» «Не могу. Не могу педаль продавить, темп падает, не могу темп держать». У него огромное сердце, которое может поставлять кислород, а мышцы его взять не могут, потому что в них кончились нерекрутированные МВ. Представьте себе, сначала мышца была большая, потребляла много кислорода, потом спортсмен стал старым, мышца атрофировалась, и не может взять кислорода больше 2 литров в минуту. Поэтому, как только он выходит на общее ПК порядка 3-4 литров всё, уже все МВ включились, а пульс еще низкий. Отсюда это удивительное событие. Он при отказе субъективно на педаль очень сильно давит, а в общем, у него всё в порядке. Закисления нет, потому что он регулярно тренируется, регулярно МВ в работу включает, поддерживая митохондрии. Но чтобы мышечную массу держать, надо либо делать специальные силовые упражнения, а он их не делает, либо быть молодым, когда много гормонов и мышцы сами по себе растут. Если ты уже старый (50-60 лет), мышцы уже не растут, они всё меньше и меньше становятся. Конечно, приведенными примерами графиков их разнообразие не исчерпывается. В реальном тесте переломы на кривой могут быть в любую сторону. Иногда на графике бывает до 4-х переломов. Для того, чтобы интерпретировать данные теста корректно, необходимо, прежде всего, определять легочную вентиляцию. По пульсу АнП почти невозможно определить. Надо дополнительную информацию получать либо в виде легочной вентиляции, либо концентрации лактата. Первый перелом (АэП) совпадает с переломом по легочной вентиляции. А вот второй перелом по легочной вентиляции соответствует анаэробному порогу, 4 ммоль/л лактата в крови. В большинстве случаев они совпадают. Какие выводы можно сделать, анализируя графики ступенчатого теста? Первое можно определить потенциальные возможности сердца по доставке кислорода к мышцам. Если рекрутируются только ОМВ, и при этом фиксируются мощность и пульс, то наблюдается некая прямая между пульсом и мощностью. Если пренебречь последующим изменением кривой графика, и продолжить дальше прямую линию до пульса 190 уд/мин (см. рис 1, прерывистая красная линия), то можно предсказать, что бы было с этим человеком, если бы он вышел на пульс 190, и при этом у него были бы только ОМВ. И тогда мы смогли бы определить потенциальные возможности сердца по доставке кислорода. Определение потенциальных возможностей сердца по графикам ступенчатого теста достаточно корректно. После достижения максимума ударный объем сердца стабилизируется, и начинает падать только на стадии дефекта диастолы. То есть на очень высоком пульсе, гораздо выше АнП. Поэтому можно экстраполировать вплоть до пульса 190 (если он не максимальный). Как правило, максимальный пульс в лыжном спорте и бывает ударов в минуту. А это, в общем-то, низкий пульс. А почему больше пульс не бывает? Потому что у спортсменов высшей квалификации, которые в очень хорошей спортивной форме находятся, АнП находится на уровне 80-90% от МПК. И поэтому нет стимула для слишком большого увеличения ЧСС, и она как раз и составляет ударов в минуту. Редко когда, тем более у лыжников, будет 200. Поэтому они и бегут близко к своему пределу, то есть чуть выше АнП. Это вполне нормальное явление, и ничего тут страшного нет. Но существует такой психологический момент: плохо подготовленные спортсмены бегут на очень высоком пульсе 210, может быть, даже 220 ударов в минуту. Они не понимают, что бегать надо на меньшем пульсе. Чисто психологически они настроены на то, что нужно все силы отдать, вот поэтому выбирают не очень рациональный режим. Как мы говорили выше, по характеру кривой можно оценить состояние мышц, соотношение ОМВ и ГМВ. Также многое может сказать сравнение графиков тестов, сделанных в разное время. Рост тренированности изменяет картину. Характер изменений показывает, рост каких

(1946 г.р.) – выпускник Государственного центрального Ордена Ленина Института физической культуры (1970).

Директор научной лаборатории «Информационные технологии в спорте» Национального исследовательского университета Московского физико-технического института.

Профессор. Кандидат биологических наук (1979). Заслуженный работник Физической Культуры. Почетный работник Высшего профессионального образования. Специалист в области биомеханики, антропологии, физиологии, теории спорта и оздоровительной физической культуры. Автор многих научных изобретений и инновационных технологий, создатель оздоровительной системы Isoton©, основоположник нового направления в науке - спортивной адаптологии, руководитель магистерской программы «Физкультурно-оздоровительные технологии» РГУФКСМиТ. Лектор Академии тренерского мастерства Российского футбольного союза. Автор более 300 научных статей, учебных пособий и монографий, ряда образовательных программ. В настоящее время участвует в научном сопровождении национальной и зарубежных олимпийских и клубных команд по футболу, дзюдо, самбо, борьбе, горным лыжам, легкой атлетике, конькобежному спорту, хоккею на траве и другим видам спорта.

Железный Мир : Здравствуйте, Виктор Николаевич. Расскажите, как вы впервые пришли в спорт.

Виктор Селуянов : Спортом я начал заниматься, когда учился в строительном техникуме. Преподаватель физкультуры мне сказал, что я могу добиться успеха либо в тяжелой атлетике, либо в велосипедном спорте и предложил выбрать, что мне более по душе. Поскольку у меня были проблемы с сердцем - врожденный порок, я принял решение его укреплять и решил стать велосипедистом. Сердце правда меня не беспокоило, поскольку чувствовал себя не хуже всех остальных и занимался почти всеми видами спорта, доступными в техникуме - баскетболом, волейболом, лыжным спортом. В техникуме была хорошая команда велосипедистов,меня к ним пристроили,и с 15-и лет, я начал заниматься. Через год выполнил норматив 1-го спортивного разряда, потом КМС, а потом 5 лет никак не мог выполнить мастерский норматив. И не мог понять причину. Я окончил техникум и решил поступить в институт Физической Культуры, чтобы узнать как стать мастером спорта. Поступил на вечернее отделение, должен был работать после окончания техникума, и стал изучать спортивные науки, в надежде ответить себе на этот вопрос: КАК СТАТЬ МАСТЕРОМ СПОРТА? В итоге даже хотел перевестись с вечернего на дневное отделение и экстерном сдал 15 предметов. То есть, собственно, окончил институт Физической Культуры за 2 года. Во время обучения я усиленно тренировался и все-таки смог добиться своей цели. Высшее мое достижение было победа в многодневной велосипедной гонке в Подмосковье. Называлась эта гонка «Ленинское знамя». За эту победу я и получил заветное звание мастера спорта. Тем не менее, даже окончив институт и выполнив мастерский норматив, я так толком и не мог для себя объяснить, как стать мастером спорта и поэтому решил углубиться в эту проблему и попытаться досконально во все разобраться

ЖМ : Вы учились на кафедре велосипедного спорта?

Виктор Селуянов : Нет, вечернее отделение педагогический факультет. Пока учился сам занимался тренерской работой в техникуме и мои ребята- шоссейники прилично выступали. Выиграли Первенство России среди техникумов. Поработал еще пару лет, а потом возник конфликт с новым директором. Он сказал, что моим ребятам необходимо сдавать нормы ГТО за каких-то рабочих с фабрики. Я возмутился и отказался. На что он ответил: тогда увольняйся. И я уволился. Но сильно расстроен не был. Поскольку понимал, что если не заниматься наукой, то тренером нельзя быть. Кстати тренирующиеся у меня молодые спортсмены, все окончили ВУЗы, а у моих приятелей тренеров - всех ребят в тюрьму пересажали. Я считаю своим высшим тренерским и педагогическим достижением того времени то, что мои ребята стали нормальными людьми и не ушли в преступность.

Вернусь к своему рассказу. Итак, я решил заняться научной деятельностью. Услышал, что есть такой известный ученый В. М. Зациорский, что у него есть научная лаборатория, где как раз изучают проблемы спорта, и что там нужны люди, которые хотят заниматься спортивной наукой.

ЖМ : А какой год тогда шел?

Виктор Селуянов : 1972.. Мне было 26 лет. Пришел я в лабораторию, меня познакомили с В. М. Зациорским, с С. К. Сарсания, с заведующим кафедры теории и методике физического воспитания А. Д. Новиковым и меня взяли на кафедру технологом. А через год я стал инженером проблемной лаборатории и сдал кандидатские экзамены. Думал защищаться на педагогические науки, а мне в итоге поручили тему, которая к педагогике не имеет отношения. Я должен был определить, сколько весят части тела у человека и какими массо-инерционными характеристиками они обладают. А это сплошная биология. В итоге я шесть лет создавал радиоизотопную методику, для того чтобы определить что сколько весит у живого человека, и потом написал диссертацию и защитил ее в Московском Государственном Университете в институте антропологии. Эту работу до сих пор никто в мире не смог повторить, и наши данные являются уникальными. Единственное в мире исследование, проведенное на живых людях в рамках которого точно определено сколько весит кисть, предплечье плечо и другие 10 частей тела испытуемого человека

ЖМ : А сейчас в современной науке используют эти данные?

Виктор Селуянов : Да весь мир ссылается на Зациорского и Селуянова, и весь мир знает этих авторов с точки зрения биомеханики. Они пользуются либо нашими данными, либо данными полученными на трупах, но наши данные живые и в этом смысле более практичны.

Виктор Селуянов : Поскольку я работал в проблемной лаборатории, мне со временем стала интересна не только сама биомеханика, но и проблемы тренировки и проблемы управления тренировочным процессом. Но, не опираясь на педагогическую информацию, а основываясь на законах биологии. Пришлось углубляться и в , и в биоэнергетику мышечной деятельности. А это было удобно, потому что в нашей лаборатории была группа Н. Волкова, сотрудники которой прекрасно разбирались в биоэнергетике. Физиологию представлял замечательный специалист Я. М. Кос. Можно было находиться на переднем крае науки, интересуясь этими проблемами. Люди, работающие в нашей лаборатории, были передовыми учеными в мире.

Итак, я начал заниматься теорией и методикой опираясь на законы биологии. Я прекрасно понимал, что такое спортивная наука и как она должна развиваться. Для того чтобы понять какие функциональные изменения происходят в человеке в целом, надо этого человека смоделировать, а еще лучше сделать из него математическую модель, и потом, все процессы тренировки рассматривать, как взаимодействие между виртуальным компьютерным спортсменом и тренером который пытается его тренировать. Поэтому перед нами была поставлена такая уникальная задача, и мы ее решили в начале 90-х годов. Мы создали модель, которая имитирует срочные адаптационные процессы и модель которая имитирует долгосрочные адаптационные процессы в мышечной ткани. в сердечной ткани, в эндокринной системе и в иммунной системе. Все это было объединено в единое целое, и у нас появился виртуальный спортсмен, которого можно было тренировать. И эта работа привела к тому, что были написаны уже более 10 монографий, где этот подход уже был реализован. И не только эти математические модели, но и практические рекомендации которые вытекают из этих моделей. А эти практические рекомендации в корне противоречат общепринятым педагогическим воззрениям. Например, чтобы готовить специалиста в циклических видах спорта по общепринятой схеме, надо сначала выполнить некоторый огромный объем работы для того чтобы создать общую выносливость. А по нашим представлениям НИКАКОЙ ОБЩЕЙ ВЫНОСЛИВОСТИ НЕТ, и надо создать мышечный аппарат, в котором много миофибрилл, и тогда человек становится сильнее, а вокруг новых миофибрилл надо создать митохондрии и тогда человек становиться выносливее. И при этом обязательно проконтролировать, соответствует ли сердце новому мышечному аппарату.

Как только мы переключились на такой подход, у нас стали получаться очень хорошие результаты во многих видах спорта. Можно сказать, что первым нашим значимым результатом была победа наших футболистов на Олимпийских Играх 1988 г. Мы занимались физической подготовкой спортсменов. Далее хороший успех с футбольной командой Динамо Ставрополь. Эту команду за один сезон, даже за одну зиму, мы подняли с последнего места и довели до первого места. И эта команда не вышла в Высшую Лигу, потому что руководство запретило ей это сделать, мотивируя тем, что стадион в Ставрополе не готов для проведения турниров такого уровня, а средств для реконструкции его нет. Большой контакт был налажен с Гаджи Муслиевичем Гаджиевым. Думаю. мы оказали большую помощь этому тренеру при подготовке к Олимпийским Играм, где он был одним из тренеров сборной. И, когда он был тренером «Анжи», команда играла во второй лиге. За один сезон она перешла в первую, а в следующем году в Высшую Лигу и заняла там 4 место. К сожалению, после этого команда была распродана..

ЖМ : Насколько я знаю, основная ваша область деятельности связана со спортсменами циклических видов спорта. Велосипедистам, лыжникам и бегунам посвящено большинство ваших научных работ и публикаций. Как давно вы обратили внимание на силовые виды спорта и начали работать в этом направлении?

Виктор Селуянов : Силовые виды спорта меня всегда интересовали, особенно когда я в первый раз пришел в НИИ к Зациорскому. Там работал Л. М. Райсон, он был штангистом и мог досконально объяснить, как надо заниматься силовой подготовкой. Занимаясь по его рекомендациям, я за месяц увеличил присед со 140 кг до 180 кг.

ЖМ : За ОДИН месяц?

Виктор Селуянов : Да. И, самое удивительное, что у меня резко пошли в гору и результаты в велоспорте. К сожалению, в это же время другой наш специалист С. К. Сарсансия занимался исследованием допингов, в том числе и анаболических стероидов и получал впечатляющие результаты. Я у него проконсультировался и решил попробовать. Купил в аптеке пачку нерабола (метандиенона) и принимал в течении месяца по 1 таб. Через месяц были соревнования и результат был очень плохой. Вообще не мог ехать. Приехал домой, проверяю, у меня же есть критерий - обхват бедра. Измеряю - был 62 см почти, а стал 58 см.

ЖМ : Вы что, сидели на жесткой безбелковой диете?!

Виктор Селуянов : Да, поскольку зарплата была маленькая, я ел только картошку и макароны. Ну и маленький кусочек колбасы. Оказывается, я нарушил баланс . На своих собственных я еще как-то держался, а вот когда добавились чужие, получилось, что я начал есть сам себя. Аминокислот для синтеза белка не хватило. Сердце было в прекрасном состоянии, мозг тоже, а мышцы исчезли. И восстановился только через месяц после прекращения приема анаболиков.

С этого времени интерес к силовым тренировкам особенно вырос, потому что они дали классный результат в прогрессе на велосипедной гонке, а прием фармакологии тоже дал тоже классный и очень показательный,правда отрицательный результат который четко показал, что при приеме гормонов из вне крайне важно правильное питание, и этим не в коем случае нельзя пренебрегать!

Сейчас у нас существует такая тенденция - в любом виде спорта поиск всех дальнейших направлений строится через силовую подготовку. Поэтому мы тщательно разрабатываем эти новые подходы, связанные с силовой подготовкой. Они включают в себя как уже известные методики, связанные с тренировкой ГМВ, так и варианты тренировок ОМВ, которые мы сами изобрели на базе нашей лаборатории. И экспериментально проверили, и отразили в ряде кандидатских диссертациях, доказав, что это реально работает.

ЖМ : Часто ли к вам обращались за помощью спортсмены силовых видов спорта? Кто из них смог добиться в дальнейшем достойных результатов?

Виктор Селуянов : Во время работы в РГАФКе ко мне приходили студенты с кафедры тяжелой атлетики. Двое из них попытались тренироваться с новыми установками, которые им были предложены. В результате один стал мастером спорта, второй стал показывать выдающиеся достижения в пауэрлифтинге. Оба они написали дипломные работы, потом поступили в магистратуру. Штангист, добившись звания мастера спорта не стал стремиться в большой спорт. А пауэрлифтер – Александр Грачёв - стал 2-м чемпионом мира по версии WPC. При этом он использовал наши разработки методического характера для того чтобы оптимизировать тренировочный процесс.

По нашим программам занимались дзюдоисты: чемпионы мира 2001 -Макаров, А. Михайлин, бронзовый призер олимпийских игр 2004 -Д. Носов; заслуженные мастера спорта по самбо Д.Максимов, Мартынов, Р.Сазонов; мсмк по армспорту А. Антонов. Можно отметить чемпиона мира среди юниоров Георгия Фунтикова. Он приходил к нам консультации, когда успешно выступал еще как спортсмен, и разрабатывал собственные тренировочные программы на базе наших разработок в период своей тренерской деятельности.

ЖМ : Много ли было защищено кандидатских диссертаций вашими последователями?

Виктор Селуянов : По нашей проблематике около 10. Одна женщина сейчас защищает докторскую по лыжному спорту. Она паралимпийская чемпионка среди ветеранов. Кстати у нас очень много чемпионов ветеранов. Им особенно нравятся наши подходы в организации тренировочного процесса, потому что тренироваться много не надо, а результаты получаются очень хорошие.

ЖМ : Расскажите про свою нынешнюю работу.

Виктор Селуянов : Основное место работы МФТИ НУЛ «Информационные технологии в спорте». И мы пытаемся сейчас активно привлекать студентов нашего ВУЗа для разработки математических моделей. которые бы описывали поведение организма человека в тренировочных и соревновательных условиях. Параллельно, у нас есть лаборатория, в которой мы проводим тестирование спортсменов в различных видах спорта, что бы оценить уровень их формы и дать направление тренировочной работе. Сейчас мы следим более чем за 100 спортсменами на уровне национальной сборной и помогаем им добиваться результатов без вреда для здоровья.

ЖМ : Расскажите об оборудовании, которое применяется в вашей лаборатории.

Виктор Селуянов : Оборудование стандартное. Как и во всем мире. Велоэргометры для оценки функциональных возможностей мышц нижних и верхних конечностей. Есть у нас электромиографы, есть силоизмерительные установки. Есть установки для оценки координационных возможностей спортсменов, на основе стабилоплотформы. В настоящее время начинаем разрабатывать методы и способы исследований движений человека. Для этого у нас есть соответствующая биомеханическая аппаратура. Для ананлиза функциональных возможностей человека есть хорошая достаточно дорогая аппаратура типа газоанализаторов, приборов для измерения концентрации лактата и сейчас появились биохимические аппараты, с помощью которых можно оценить состояние крови спортсменов во время тренировок и соревнований.

Мы расширяем свой ассортимент и продолжаем проводить научные исследования используя собранный нами статистический материал.

ЖМ : Спасибо за интервью, Виктор Николаевич. Мы надеемся, что вы и дальше будете удивлять научный мир своими новыми уникальными разработками, а наши спортсмены, используя их будут занимать первые места на соревнованиях любого уровня!

Виктор Николаевич Селуянов хорошо известен в кругу спортсменов и тренеров как спортивный методист и ученый. Одну из его лекций наш коллега решился пересказать

Подготовлено по итогам семинара «Физическая подготовка спортсменов». Москва, клуб «Гераклион», 7.09.2013. Лектор: Селуянов Виктор Николаевич, к.б.н., профессор.

Вместо предисловия

Виктор Николаевич пришел в науку из спорта (в частности из велоспорта). Сегодняшнему профессору довелось испытывать тренировочные нагрузки и соответствующие ощущения на себе. Он не просто понимает, но именно чувствует спорт. Это его отличает от многих из коллег по науке, начинающих «плавать», когда им задают практические вопросы. С использованием методики Селуянова подготовлен не один десяток спортсменов мирового уровня, а некоторые из его учеников работают с национальными сборными командами.

В сети можно отыскать не мало видео лекций ученого и несколько его популярных статей. Тем не менее, здесь (на 1-fit.ru) материал изложен с позиции прежде всего любительского спорта . Во всяком случае, мы постарались расставлять акценты именно таким образом.

Принцип моделирования

Человек устроен весьма не просто — природа постаралась! Стоит капнуть какой-то вопрос из области физиологии — сталкиваешься с его недостаточной изученностью или даже с чисто гипотетическим характером знаний. Для облегчения работы со сложными системами (например, в технике) принято строить их относительно простые модели, с помощью которых и оценивают происходящее. При построении таких моделей все самое главное стараются непременно принять во внимание, а что-то второстепенное и менее значимое умышленно игнорируют.

Руководствуясь принципом моделирования, профессор Селуянов рассматривает основные взаимосвязи в организме, касающиеся работы мышц и их энергетического обеспечения. Собственно, то главное, что учитывает его модель и на чем она построена — процессы энергетического обмена в мышечной тканях . Модель принимает во внимание факторы, от которых эти процессы очевидно зависят и те последствия для организма, к которым они приводят.

Точка опоры

Отправной точкой в модели служат современные представления о функционировании «идеальной клетки», то есть такой собирательный образ клетки , которого в жизни искать днем с огнем. Тем не менее, это принятое описание, широко используемое для обучения студентов и школьников (строение клетки изучают на уроках биологии в 5-ом классе). В общем, чем богаты, тому и рады (это мы о медицине в целом).

Среди разнообразных внутренностей клетки, на особом счету спортсменов и тренеров должны быть — внутриклеточные элементы (органеллы), отвечающие за дыхание клеток и за переваривание ими разного (но не любого) топлива. Собственно, «дыхание» и энергетическое обеспечение — две стороны одной медали. Митохондрии способны из имеющихся в их распоряжении кислорода (дыхание) и реактивов (жиров или пирувата), в результате химических превращений получать «энергию» — ту самую , которая в нашем организме обеспечивает почти все .

[Если в клетке есть развитые митохондрии, то клетка способна дышать, с одной стороны, и жиры или пируват с другой. Если митохондрий нет или они плохо развиты — клетка в этом смысле дышать не может, поскольку дыхание требует обязательного участия ферментов, содержащихся в митохондриях (сокращенно эти ферменты называют СДГ, а-ГФДГ, ГДГ, МДГ, ЛДГ). – Прим. 1-fit.ru ]

Итак, митохондрии часто называют энергетическими станциями клетки. Чем они больше развиты, тем лучше! Для видов спорта на выносливость (и просто для здоровья) количество и размер митохондрий в мышцах имеют решающее значение . Чем больше, тем лучше. Соответственно, значительная часть усилий спортсменов и тренеров в спорте направлена (понимают они это или нет) на развитие митохондрий в работающих мышцах.

Еще один мелкий, на первый взгляд, нюанс, на который нужно обратить внимание применительно к изучению энергетики клетки: внутри каждой клетки есть свои небольшие запасы жира и углеводов (гликогена). Это наиболее доступный запас, расходуемый в первую очередь. Когда такой легко доступный запас иссякает, клетка требует его пополнения через свою оболочку (мембрану). А проникнуть сквозь мембрану для крупных молекул (глюкозы, например) без участия гормонов (применительно к глюкозе — без инсулина) очень сложно.

В модели Виктора Николаевича используется упрощенное представление о клетке. При этом, очевидно, принимается во внимание влияние лишь , таких как инсулин, адреналин, СТГ (), тестостерон и некоторых других (далеко не всех оказывающих влияние на анаболические или катаболические процессы в клетке).

Модель мышечного волокна

Кроме формализованного представления о клетке, в модели используется также упрощенное представление о строении единичного мышечного волокна, а точнее его небольшого фрагмента — саркомера. Людям далеким от медицины вряд ли стоит вникать в подробности, но есть смысл понять самое главное: саркомер сокращается и расслабляется в результате «накачивания» в него или «откачивания» из него ионов кальция; этот процесс требует АТФ; избыток ионов водорода может все это нарушить...

[Внутри каждого из множества «кусочков» мышцы (саркомеров) есть идущие параллельно друг другу актиновые (тонкие) и миозиновые (толстые) нити. Последние имеют своеобразные мостики или головки (похожи на волоски, отходящие от миозиновых нитей под углом). Чтобы мышца сократилась, на эти мостики нужно «подать» ионы кальция. Тогда, в результате взаимодействия миозиновых и актиновых нитей фрагмент мышечного волокна (саркомер) сократится. Для расслабления мышцы, напротив, ионы кальция нужно забрать. За выдачу и возврат ионов кальция отвечают Т-трубочки, входящие в состав специальной структуры — саркоплазматического ретикулума. Последний способен менять поляризацию своей мембраны, что и меняет направление движения ионов кальция. Реполяризацию обеспечивает так называемый кальциевый насос (кстати, всякого рода насосов у нас с вами в организме довольно много). Только насос — это не железяка с поршнем, а особый белок, легко внедряющийся в мембрану клетки. Его называют для простоты Са-АТФ-азой. Из названия, кроме прочего, следует, что транспорт кальция этим белком осуществляется также при использовании АТФ в качестве топлива. Об эффективности насоса может говорить тот факт, что он способен «тащить» ионы кальция против градиента их концентрации при различии этой концентрации на мембране в 1000 раз! – Прим. 1-fit.ru ]

Итак, мышца состоит из «кусочков». Каждый «кусочек» может сокращаться или расслабляться. Для его сокращения и даже расслабления требуется АТФ...

Молекула АТФ довольно большая и оперативно перемещаться по клетке она не может . Если в «рабочей области» клетки не хватает АТФ (легко доступный запас АТФ израсходован), на помощь приходит креатинфосфат. Он с одной стороны способен выступать в качестве временного аккумулятора энергии, быстро восстанавливая запасы АТФ в «рабочей зоне», с другой — часто выступает передаточным звеном. Вначале свободный креатин «захватывает» энергию, превращаясь в креатинфосфат, затем последний эту энергию отдает на ресинтез АТФ, превращаясь обратно в креатин.

И тут мы и подошли к пониманию роли креатина (креатинфосфата). Он собою «затыкает» кратковременные энергетические бреши . Чем больше в мышцах будет этого вещества, тем большую «дыру» он может заткнуть. А чем быстрее будет проходить обратимая реакция превращения креатина в креатинфосфат (и обратно), тем большую мощность мышца способна выдавать в переходных режимах (в режиме роста мощности, в частности).

Наконец, последний важный шаг. Скорость превращения «креатин-креатинфосфат» зависит от количества фермента, который этот процесс стимулирует — миозиновой АТФазы. Именно исходя из содержания этого фермента мышцы делятся на быстрые и медленные волокна . И такая (деление на быстрые и медленные) не имеет ничего общего с другим делением — на «сильные» и «выносливые» волокна. Выносливость зависит от количества митохондрий в мышце и соответственно, от содержания в ней ферментов митохондрий. С этой точки зрения мышечные волокна делятся на гликолитические (ГМВ) и окислительные (ОМВ). Первые быстро устают, вторые могут работать без устали. Причем, их сила при этом меньше не становится. Есть еще и так называемые промежуточные волокна (ПМВ), это нечто среднее между ОМВ и ГМВ.

Таким образом, в корне не верно противопоставлять быстрые волокна и выносливые волокна. Выносливые могут быть как быстрыми, так и медленными, а быстрые — как выносливыми, так и легко утомляемыми.

Впрочем, справедливости ради нужно заметить, что низкопороговые двигательные единицы состоят преимущественно из ОМВ и они чаще всего медленные, а высокопороговые ДЕ почти всегда состоят из быстрых волокон, которые у обычных людей гликолитические (быстро утомляемые) и только у хорошо тренированных спортсменов они имеют достаточно митохондрий, чтобы относиться не к ГМВ, а к промежуточным волокнам (относительно выносливым).

Даешь ОМВ

Как можно догадаться из предыдущего изложения, роль митохондрий в организме спортсмена трудно переоценить. Они дают выносливость и «пожирают» молочную кислоту, обеспечивают в 18 раз более полное использование энергии накопленного в мышце гликогена и так далее. По большому счету, основная концепция профессора Селуянова, благодаря которой он стал известен многим спортсменам и тренерам, может быть в первом приближении описана именно как обоснование высокой роли митохондрий и, соответственно, ОМВ в любых видах спорта, связанных с применением мышечной работы (кроме шахмат, кёрлинга, дартса и прочих им подобных дисциплин). Это грубое упрощение, но с точки зрения любителей вполне имеющее право на существование.

Критика в адрес такого подхода периодически звучит. В основном она связана с пониманием того, что не едиными митохондриями жив спортсмен. Однако, существование других составляющих спортивной подготовки ничуть не отрицает высокой значимости именно этой работы. Осталось разобраться, как развивать описанные мышечные структуры.

Простая арифметика

Организм человека с точки зрения обеспечения мышечной деятельности вполне поддается моделированию. Он описывается принципами, аналогичными применяемым в инженерной практике: какая мощность требуется и какая есть в наличии, какой крутящий момент (например, на педалях велоэргометра) мышцы могут выдавать и достаточно ли этого в данном виде спорта, чтоб претендовать хоть на что-то... Почти все здесь рассчитывается!

Силовые и мощностные параметры, которыми описывают спортсмена, принято делить на кратковременные, средне длительные и долговременные. Во многих спортивных лабораториях без труда определяют максимальную кратковременную () мощность МАМ (это сверх усилие, выдаваемое несколько секунд), мощность на уровне ПАНО — (при длительности работы один час), и аэробную мощность, которую мы можем выдавать почти бесконечно долго (условно, конечно).

Для каждого из трех режимов также не трудно определить свое значение (тоже важный энергетический показатель) и соответствующее границе каждого уровня значении ЧСС. А что, собственно, далее?

Если вы спринтер, ваши шансы на успех можно определить по максимальным показателям, таким как максимальное потребление кислорода МПК и максимальная алактатная мощность. Если марафонец — для анализа нужно оценивать потребление кислорода на уровне ПАНО и соответствующую мощность. Именно эти последние показатели во многом и указывают на состав мышц — сколько в них ОМВ и ГМВ. Чем больше в мышцах митохондрий, тем больше у спортсмена процент ОМВ, и тем выше у него уровень ПАНО. А чем выше этот уровень, тем больше вырабатываемая «длительная» мощность и соответствующее ей потребление кислорода (индикатор мощности окислительных процессов).

Нет необходимости брать биопсию мышц, чтобы оценить степень готовности спортсмена и дать ему рекомендации по дальнейшей подготовке. Достаточно проверить все его мощности и оценить потребление кислорода на разных режимах, построить графики и сравнить их с результатами тестирования других спортсменов той же специализации.

Есть, правда, один нюанс. Для тех, кто состязается на равнине и НЕ преодолевает постоянно земное тяготение, имеют первостепенное значение абсолютные показатели в ваттах (мощность) и литрах в минуту (ПК). Для тех же, кто выходит на рельеф или иным образом бросает вызов законам тяготения (например, бегает), важнее иметь относительные показатели — отнесенные к массе тела. Их соответственно измеряют в ваттах/кг и л/мин/кг.

А дальше — все просто (с точки зрения общих методических рекомендаций). Если не хватает максимальной алактатной мощности — «накачивайте» мышцы. Если не хватает мощности на уровне ПАНО — окисляйте имеющиеся ГМВ (но прежде всего ПМВ) пока не будет достигнут предел по их окислению (для ног это соответствует мощности на ПАНО в 40-45% от МАМ, для рук — примерно 30-35%). Если этот предел достигнут, придется заняться гипертрофией ОМВ. О методах решения всех трех задач (гипертрофия ГМВ, окисление ПМВ и ГМВ, гипертрофия ОМВ) профессор рассказал на семинаре в картинках и схемах.

Схема 1. Как гипертрофировать ГМВ (традиционные силовые упражнения)

Как «накачивать» мышцы рассказывают в любом тренажерном зале или фитнесс-клубе (иногда, к сожалению, только это и рассказывают). Ключевые моменты состоят в том, что рекрутировать мышцы нужно глубоко (усилием 80-90% от максимального) и работать до отказа (чтобы возник мышечный стресс). Впрочем, это и так все знают. А вот, что знают не все, так это то, что между подходами требуется активный отдых (ходьба, легкая гимнастика или растяжка), иначе за 5-10 минут мышцы от остатков молочной кислоты не очистить. И что не менее важно, повторять тяжелую развивающую работу на ту же мышцу профессор рекомендует не раньше, чем через неделю.

Схема 2. Как увеличить окислительные способности ПМВ и ГМВ

Здесь приведена одна из схем работы на рост окислительного потенциала. На что обратить внимание в этом случае... Во-первых, на небольшую продолжительность работы. Если она связана с высоким закислением (силовая работа), то более 10 секунд держать себя в подкисленном состоянии не нужно (а лучше меньше). Если это аэробно-силовая работа (выпрыгивания из приседа, ускорения в подъем), то продолжительность такой работы 30-40 секунд, если выполняется работа аэробного характера без сильного закисления (гладкий бег на уровне ПАНО), то она может продолжаться до 2-4 минут.

Во всех случаях важно дать мышцам «продышаться» . При короткой тяжелой работе (измеряемой несколькими секундами) отдых составляет от 45 сек до 2 минут, при работе средней интенсивности и продолжительности (30-40 сек) требуется перерыв на активный отдых на 2-5 минут, при относительно длительных нагрузочных отрезках (2-4 мин) активно отдыхать желательно 5-10 мин. Обратите внимание, что время активного отдыха больше, чем время под нагрузкой!

Количество подходов также зависит от характера работы. Если работать по несколько секунд, то повторить можно 30-40 раз, если грузиться по 30-40 секунд, то хватит 10-20 повторов, если работать интервалами 2-4 минуты, то делать это более 10 раз нет необходимости.

Схема 3. Как гипертрофировать ОМВ (статодинамика)

Сложность в «накачивании» окислительных волокон состоит в том, что они не желают закисляться. Чтобы обойти это препятствие выполняют упражнения без расслабления (или с искусственным дополнительным напряжением) и с ограниченной амплитудой движений. Усилия НЕ большие, но если мышца не имеет возможности раскислиться, то и этого хватает. Для этого делают супер-серии: «40 сек работа - 40 секунд отдых», и так 3-6 раз за серию. Количество серий — от 1-3 (поддерживающая работа для профессионалов) до 4-9 (развивающая работа для профессионалов). Любителям 4-9 будет многовато, а вот 3-6 серий в качестве развивающей работы вполне по силам. Важно, что в конце каждой суперсерии к последним секундам должно быть тяжело, а к концу последней суперсерии должен наступить отказ, как признак мышечного стресса.

Строительство мышечных структур

Абсолютное большинство физкультурников и значительная часть спортсменов выполняют только ту силовую работу, которая ведет к гипертрофии ГМВ — мышц полезных при работе на взрыв, но плохих с точки зрения выносливости. В каждом виде спорта есть свой оптимум — каков должен быть поперечник каждой из мышц на теле . Развивать ГМВ сверх такого оптимума — не разумно. Это будет не улучшать результаты, а наоборот, ухудшать (утверждение справедливо для тех видов спорта, где требуется выносливость).

Работа на гипертрофию как ГМВ, так и ОМВ требует в своей финальной стадии качественного мышечного стресса. Именно он обеспечивает выброс в кровь гормонов, которые способны запустить синтез новых белков в мышцах.

Работа на окисление мышц (рост массы митохондрий в них) имеет другую сложность. Окисление мышц требует очень точного дозирования нагрузки и отдыха . Большинство людей, имеющих значительный тренировочный опыт и «закалку», по привычке перегружают себя, не давая мышцам достаточного времени на отдых или же надолго загоняют себя в режим высоких концентраций лактата. Правильная же тренировка, направленная на окисление ПМВ и ГМВ, подразумевает лишь кратковременную работу с высоким усилием, после которой следует длительный активный отдых. Затем цикл нагрузки и восстановления повторяется. Важно, чтобы после снятия нагрузки пульс быстро упал до значений, соответствующих гарантированно аэробному режиму, поскольку развитие митохондрий требует их «дыхания» , а оно возможно только при достаточном количестве кислорода.

Пример тренировок молодого спортсмена (бег)

Теория особенно хороша, когда подтверждается практикой — верно? Практики у Виктора Николаевича более чем достаточно, в том числе, в различных (!) видах спорта высших достижений. На семинаре был приведен следующий пример. Молодой 17-летний спортсмен (бег) тренировался 4 месяца по методике, направленной на окисление ГМВ. Максимальное потребление кислорода (МПК) изменилось НЕ очень сильно, поскольку этот «максимум» никто и не тренировал. Зато потребление кислорода на уровне ПАНО выросла всего за 4 месяца почти на 38% . Результат просто феноменальный, ведь это было сделано всего за один подготовительный сезон, причем зимой — когда у большинства бегунов наблюдается спад спортивной формы.

Все виды тренировочной активности приведены в таблице. На что важно обратить внимание в этом примере... Спортсмен бегал всего по 25-35 км в неделю на четырех беговых тренировках, находясь на уровне КМС по легкой атлетике. Для спортсмена такого уровня этот тренировочный объем чрезвычайно мал (исходя из классических канонов). Однако... сработало!

К описанной программе тренировок и показанным результатам следует сделать важную ремарку касательно кросса на ЧСС=180. Для молодого бегуна уровня КМС (с массой тела 51 кг) это значение пульса примерно соответствует уровню АнП (), а может оказаться и ниже этой границы (хотя это и не указано в явном виде). Разумеется, любителям, а также плохо тренированным и просто людям среднего или старшего возраста нельзя (!) ориентироваться на указанное значение ЧСС; для них это будет слишком много. Хорошо тренированные могут ориентироваться на свой собственный уровень ПАНО, а тем, кто не очень уверен в себе, можно работать чуть ниже уровня своего (!) ПАНО.

Разное

Кроме основной логической нити выступления, на семинаре затрагивались отдельные мелкие или второстепенные вопросы, которые тоже могут многим показаться интересными. Поскольку они несколько выпадают из основной логики повествования, то приводятся здесь в виде россыпи отдельных тезисов.

Срок жизни митохондрий

Жизненный цикл митохондрий около 20-30 дней. Если в течение этого периода хорошо «кормить» свои митохондрии, они будут расти или удерживать массу накопленных в них ферментов. Если в течение этого срока бездельничать, митохондриальная масса будет почти полностью потеряна. Поэтому, если человек ложится надолго в больничную койку, а затем начинает ходить (после длительного бездействия), он задыхается даже при обычной ходьбе. Причина в том, что когда-то бывшие окислительными мышечные волокна стали гликолитическими. Мышцы с преобладанием ГМВ выделяют при работе большое количество лактата, который нечем переваривать (нет митохондрий).

[С другой стороны, есть факт: бывшие спортсмены очень быстро набирают (или частично восстанавливают) свою форму. Это говорит о хорошей «памяти» мышц. После начала тренировок митохондриальная масса относительно быстро восстанавливаются у тех, у кого ее когда-то было много. Это происходит намного быстрее, чем создание митохондриальной массы у тех, у кого ее в больших количествах раньше не было. – Прим. 1-fit.ru ]

Гипертрофия надпочечников

При занятиях спортом активно развивается эндокринная система, вплоть до гипертрофии отдельных желез. В частности, может проявляться гипертрофия надпочечников. Обычные врачи (не спортивные) знают о патологической гипертрофии надпочечников, поэтому увидев такое, могут ставить «страшные» диагнозы. На самом деле, у спортсменов эта гипертрофия имеет иную природу.

Избыток кортизола

Длительные и частые тренировки (большие тренировочные объемы) способны формировать в организме высокую концентрацию кортизола (изменять ), который угнетает эндокринную систему и вызывает «эндокринную перетренированность».

[Кортизол подавляет метаболизм белков и повышает их катаболизм, поэтому в период больших объемов могут «спадать» мышцы. И в любом случае, при попытке развивать мышечные структуры следует избегать больших тренировочных объемов, применяя периодизацию. – Прим. 1-fit.ru ]

Влияние тренировок на менструальный цикл у женщин

Тяжелые тренировки вызывают изменение гормонального фона у всех атлетов. Кроме прочего растет и уровень тестостерона, что у женщин часто приводит к отсутствию месячных. Это не является патологией и не влияет на способность к деторождению. Даже после длительной спортивной жизни спортсменки часто делают перерыв в занятиях спортом и рожают здоровых детей. Также к прекращению месячных приводит значительное снижение жирового компонента (высушивание). Это тоже не несет долговременных угроз и также имеет обратимый характер.

Высокий и низкий каденс (частота педалирования) у спортсменов (велосипедистов) разного уровня

Закисление мышц по разному влияет на спортсменов с разным спортивным стажем. В частности, способность мышц быстро расслабляться, высвобождая ионы кальция из миозин-актиновых связей, напрямую связана с общим стажем спортивных тренировок. У молодых спортсменов мышцы быстрее «дубеют» за счет того, что при «забивании» мышц ионами водорода они хуже расслабляются. Это обстоятельство обуславливает неспособность молодых и плохо тренированных спортсменов работать на высоком каденсе в велоспорте или обеспечивать высокую частоту повторений движения в других видах. Опытным спортсменам легче и выгоднее работать с высокой частотой, в то время как молодые нередко предпочитают меньшую частоту, но большую силу. Им действительно так легче.

Сухожильные концы мышечных волокон

Тренировки развивают как мышцы, так и их сухожильные окончания. Однако, скорость укрепления последних гораздо ниже. Если на адаптацию к новому, более высокому уровню нагрузки, центральной части мышц требуется около 15 дней, то сухожильным окончаниям — около трех месяцев! Это приводит к тому, что быстро прогрессирующие спортсмены часто получают травмы связок, в том числе, как результат накопления микротравм. Особенно опасны в этой связи эксцентрические нагрузки (работа мышц с их удлинением, например, при спрыгивании с препятствия).

Формы выпуска креатина

Высокое значимость для мышечной деятельности креатин-фосфата делает обоснованным его применение не только в силовых видах спорта, но и в видах на выносливость. Наиболее распространенная форма креатина для приема внутрь — креатина моногидрат. Однако, следует иметь в виду, что эта форма креатина задерживает воду, поэтому увеличивает вес тела за счет метаболической воды. Существуют другие формы креатина, не обладающие таким эффектом, однако они стоят дороже.

Заминка при силовых упражнениях

При некоторых видах тренировок (например, при работе на гипертрофию МВ) спортсмен специально добивается высокой концентрации молочной кислоты в тканях. Однако, даже в этих случаях (когда высокой концентрации лактата добиваются специально) чрезмерно длительное воздействие ионов водорода способно приводить к негативным последствиям. Чтоб их избежать после тренировок важна заминка.

Если после тяжелой мышечной работы заминку не проводить, полное очищение организма от лактата потребует около часа. Если же использовать активный отдых, что уже через 5-10 минут уровень лактата падает до безопасного. Нужно помнить, что при тяжелой мышечной работе максимальная концентрация лактата часто достигается НЕ во время выполнения упражнений, а вскоре после снятия нагрузки. Это связано с тем, что в мышцах продолжается процесс анаэробного гликолиза, направленный на восполнение потерянных запасов АТФ. Во время заминки поддерживают легкую двигательную активность в гарантированно аэробном режиме.

Скоростно-силовая работа у подростков в возрасте до 14 лет (юноши)

Примерно до 14 лет у юношей и до 12-13 лет у девушек в структуре мышц преобладают медленные мышечные волокна (с низким содержанием миозиновой-АТФазы). По этой причине выполнение скоростно-силовых тренировок до достижения этого возраста обычно не дает сколь-нибудь заметного эффекта по улучшению резкости работы.

Влияние артериальной системы на перекачивание крови

Нельзя говорить, что кровь перекачивается только сердцем. Огромную роль в перекачке крови играют артерии, имеющие свои собственные насосы — сокращающиеся стенки сосудов и клапаны в них. Если артериальная система работает плохо, нагрузка на сердце растет и появляется гипертония. Работа больших мышечных масс также помогает перекачивать кровь. Активная работа крупных мышц без их «передавливания» (без высокой степени напряжения) способствует лучшему венозному возврату крови и увеличению систолического объема (объему крови, который выталкивается сердцем за одно сокращение). В таком случае, можно говорить и об участии крупных мышц в гипертрофии сердца спортсмена.

Питание спортсменов на ночь

При высоких дневных физических нагрузках нормальное питание на ночь (вечером) обязательно — прежде всего, белками и в меньшей степени углеводами. Это необходимо для обеспечения достаточного количества аминокислот, из которых организм может строить мышечные структуры. Наиболее активное строительство мышц происходит именно ночью, поэтому нехватка в организме аминокислот может обесценить дневные тренировки, лишив возможности восстановления и адаптации.

Появление слишком высокого пульса из-за «недержания» сердечного клапана

При больших нагрузках нередки случаи, когда из-за высокого давления крови в аорте (сразу за сердцем), сердечный клапан «не держит» этого давления и приоткрывается. В таких случаях может следовать заметный рост пульса до очень высоких значений.

Разный эндокринный ответ на тренировку рук и ног

Из опыта известно, что для улучшения мощностных показателей рук их нужно тренировать примерно в два раза чаще, чем ноги. Скорее всего, это связано с тем, что в руках сосредоточено меньше мышц (по массе) и даже тяжелая работа вызывает гораздо меньший ответ со стороны эндокринной системы — меньший рост уровня гормонов. Чтобы «обмануть» организм, можно в дни тренировки рук добавить один-два подхода на ноги. Сформированный ногами мышечный стресс вызовет более высокий рост гормонов, чем это могло быть инициировано руками, а эффект от этого будет распространен на все тренируемые мышцы. Таким образом можно повысить эффективность тренировок рук.

Работа с усилием 80% от максимума

Чтобы пробить всю мышцу полностью, совершенно не обязательно работать с усилием в 95-100% от максимума. Все равно, за одно сокращение вся мышца никогда в работу не вовлекается. Одновременно работают все окислительные волокна и некоторая часть гликолитических. Последние из-за быстрого утомления постоянно меняют друг друга, работая поочередно. Для того, чтобы «пробить» таким образом всю мышцу полностью, достаточно работать примерно с 80% от максимального усилия. В результате многократных повторений спустя некоторое время очередь дойдет до самых трудно рекрутируемых ГМВ.